We study the dispersive properties of the wave equation associated with the shifted Laplace–Beltrami operator on real hyperbolic spaces and deduce new Strichartz estimates for a large family of admissible pairs. As an application, we obtain local well-posedness results for the nonlinear wave equation.

The wave equation on hyperbolic spaces / Anker, J. P.; Pierfelice, V.; Vallarino, Maria. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 252:10(2012), pp. 5613-5661. [10.1016/j.jde.2012.01.031]

The wave equation on hyperbolic spaces

VALLARINO, MARIA
2012

Abstract

We study the dispersive properties of the wave equation associated with the shifted Laplace–Beltrami operator on real hyperbolic spaces and deduce new Strichartz estimates for a large family of admissible pairs. As an application, we obtain local well-posedness results for the nonlinear wave equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2498366
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo