A well known conjecture about the distribution of primes asserts that between two consecutive squares there is always at least one prime number. The proof of this conjecture is out of reach at present, even under the assumption of the Riemann Hypothesis. The aim of this paper is to provide a conditional proof of the conjecture assuming a hypothesis about the behavior of Selberg's integral in short intervals.
Prime numbers between squares / Bazzanella, Danilo. - In: RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA. - ISSN 0035-6298. - STAMPA. - 3*:(2004), pp. 159-164.
Prime numbers between squares
BAZZANELLA, Danilo
2004
Abstract
A well known conjecture about the distribution of primes asserts that between two consecutive squares there is always at least one prime number. The proof of this conjecture is out of reach at present, even under the assumption of the Riemann Hypothesis. The aim of this paper is to provide a conditional proof of the conjecture assuming a hypothesis about the behavior of Selberg's integral in short intervals.File | Dimensione | Formato | |
---|---|---|---|
Prime-numbers-between-squares.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
208.76 kB
Formato
Adobe PDF
|
208.76 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2496963
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo