A well known conjecture about the distribution of primes asserts that between two consecutive squares there is always at least one prime number. The proof of this conjecture is out of reach at present, even under the assumption of the Riemann Hypothesis. The aim of this paper is to provide a conditional proof of the conjecture assuming a hypothesis about the behavior of Selberg's integral in short intervals.

Prime numbers between squares / Bazzanella, Danilo. - In: RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA. - ISSN 0035-6298. - STAMPA. - 3*:(2004), pp. 159-164.

Prime numbers between squares

BAZZANELLA, Danilo
2004

Abstract

A well known conjecture about the distribution of primes asserts that between two consecutive squares there is always at least one prime number. The proof of this conjecture is out of reach at present, even under the assumption of the Riemann Hypothesis. The aim of this paper is to provide a conditional proof of the conjecture assuming a hypothesis about the behavior of Selberg's integral in short intervals.
File in questo prodotto:
File Dimensione Formato  
Prime-numbers-between-squares.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 208.76 kB
Formato Adobe PDF
208.76 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2496963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo