We prove an abstract theorem whose sole hypothesis is that the degree of a certain map is nonzero and whose parametric equations are studied using cohomological mconclusions imply sharp, multidimensional continuation results. Applications are given to nonlinear partial differential equations.
On the covering dimension of the set of solutions of some nonlinear equations / Fitzpatrick, P.; Massabò, I.; Pejsachowicz, Jacobo. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 296:(1986), pp. 529-540.
On the covering dimension of the set of solutions of some nonlinear equations
PEJSACHOWICZ, JACOBO
1986
Abstract
We prove an abstract theorem whose sole hypothesis is that the degree of a certain map is nonzero and whose parametric equations are studied using cohomological mconclusions imply sharp, multidimensional continuation results. Applications are given to nonlinear partial differential equations.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											coveringdimenstrans.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											1. Preprint / submitted version [pre- review]
										 
									
									
									
									
										
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
									
									
										Dimensione
										2.39 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								2.39 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2495706
			
		
	
	
	
			      	Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
