The paper analyses theoretically the quenching of the ground state (GS) power observed in InAs/GaAs quantum dot lasers when emitting simultaneously from both ground state and excited state. The model, based on a set of rate equations for the electrons, holes, and photons, shows that the power quenching is caused by the different time scales of the electron and hole intra-level dynamic, as well as by the long transport time of the holes in the GaAs barrier. The results presented also evidence how the very different dynamics of electrons and holes have other important consequences on the laser behavior; we show for example that the electron and hole carrier densities of the states resonant with lasing modes are never clamped at the threshold value, and that the damping of relaxation oscillations is strongly influenced by the hole dynamics.

Ground-state power quenching in two-state lasing quantum dot lasers / Gioannini, Mariangela. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - STAMPA. - 111:4(2012), pp. 043108-1-043108-9. [10.1063/1.3682574]

Ground-state power quenching in two-state lasing quantum dot lasers

GIOANNINI, Mariangela
2012

Abstract

The paper analyses theoretically the quenching of the ground state (GS) power observed in InAs/GaAs quantum dot lasers when emitting simultaneously from both ground state and excited state. The model, based on a set of rate equations for the electrons, holes, and photons, shows that the power quenching is caused by the different time scales of the electron and hole intra-level dynamic, as well as by the long transport time of the holes in the GaAs barrier. The results presented also evidence how the very different dynamics of electrons and holes have other important consequences on the laser behavior; we show for example that the electron and hole carrier densities of the states resonant with lasing modes are never clamped at the threshold value, and that the damping of relaxation oscillations is strongly influenced by the hole dynamics.
File in questo prodotto:
File Dimensione Formato  
_ojpstmp_stampPdf_d_22T10_18_JAPIAU_111_4_043108_1.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2495610
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo