Scale-invariant phenomena are common in nature and fractals represent a suitable mathematical tool to describe them. Snow avalanche flow is made up of a mixture of grains and aggregates (granules) which can be broken or sintered together. The granular properties and interactions are important in understanding how avalanches flow. In this paper a fractal model for describing the grain-size distribution in the deposit of a snow avalanche is formulated by introducing the concept of aggregation probability. Although the model is two-dimensional, an extension to the three-dimensional case is proposed in the conclusions. The cumulative size distribution law is extrapolated from the model, and a physical discussion on fractal parameters is conducted. Finally, an experimental application to a real avalanche event is considered to confirm the predictions of the model and to present an extension to multifractality.
Fractal grain distribution in snow avalanche deposits / DE BIAGI, Valerio; Chiaia, Bernardino; Frigo, Barbara. - In: JOURNAL OF GLACIOLOGY. - ISSN 0022-1430. - STAMPA. - 58:(2012), pp. 340-346. [10.3189/2012JoG11J119]
Fractal grain distribution in snow avalanche deposits
DE BIAGI, VALERIO;CHIAIA, Bernardino;FRIGO, BARBARA
2012
Abstract
Scale-invariant phenomena are common in nature and fractals represent a suitable mathematical tool to describe them. Snow avalanche flow is made up of a mixture of grains and aggregates (granules) which can be broken or sintered together. The granular properties and interactions are important in understanding how avalanches flow. In this paper a fractal model for describing the grain-size distribution in the deposit of a snow avalanche is formulated by introducing the concept of aggregation probability. Although the model is two-dimensional, an extension to the three-dimensional case is proposed in the conclusions. The cumulative size distribution law is extrapolated from the model, and a physical discussion on fractal parameters is conducted. Finally, an experimental application to a real avalanche event is considered to confirm the predictions of the model and to present an extension to multifractality.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2488822
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo