We show that nontrivial homoclinic trajectories of a family of dis- crete, nonautonomous, asymptotically hyperbolic systems parametrized by a circle bifurcate from a stationary solution if the asymptotic stable bundles of the linearization at the stationary branch at plus and minus infinity are twisted in different ways.
Topology and homoclinic trajectories of discrete dynamical systems / Pejsachowicz, Jacobo; Robert, Skiba. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - STAMPA. - 6:4(2013), pp. 1077-1094. [10.3934/dcdss.2013.6.1077]
Topology and homoclinic trajectories of discrete dynamical systems
PEJSACHOWICZ, JACOBO;
2013
Abstract
We show that nontrivial homoclinic trajectories of a family of dis- crete, nonautonomous, asymptotically hyperbolic systems parametrized by a circle bifurcate from a stationary solution if the asymptotic stable bundles of the linearization at the stationary branch at plus and minus infinity are twisted in different ways.| File | Dimensione | Formato | |
|---|---|---|---|
| 2ArX07_11-JPRS-AIMS.pdf accesso aperto 
											Tipologia:
											1. Preprint / submitted version [pre- review]
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										382.87 kB
									 
										Formato
										Adobe PDF
									 | 382.87 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2472587
			
		
	
	
	
			      	Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
