In this paper we consider the Laplace–Beltrami operator on Damek–Ricci spaces and derive pointwise estimates for the kernel of e^{\tau\Delta}, when \tau has nonnegative real part. We obtain in particular pointwise estimates of the Schrödinger kernel associated with \Delta. We then prove Strichartz estimates for the Schrödinger equation, for a family of admissible pairs which is larger than in the Euclidean case. This extends the results obtained by Anker and Pierfelice on real hyperbolic spaces. As a further application, we study the dispersive properties of the Schrödinger equation associated with a distinguished Laplacian on Damek–Ricci spaces, showing that in this case the standard L^1-L^\infty estimate fails while suitable weighted Strichartz estimates hold.
Schrödinger Equations on Damek–Ricci Spaces / Anker J.-Ph.; Pierfelice V.; Vallarino M.. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - STAMPA. - 36:6(2011), pp. 976-997. [10.1080/03605302.2010.539658]
Titolo: | Schrödinger Equations on Damek–Ricci Spaces | |
Autori: | ||
Data di pubblicazione: | 2011 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1080/03605302.2010.539658 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
ankerpierfelicevallarino-CPDE2011.pdf | articolo principale | 2. Post-print / Author's Accepted Manuscript | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2468179