Epilepsy is a neurological disorder characterized by the presence of recurring seizures. Like many other neurological disorders, epilepsy can be assessed by the electroencephalogram (EEG). The EEG signal is highly non-linear and non-stationary, and hence, it is difficult to characterize and interpret it. However, it is a well-established clinical technique with low associated costs. In this work, we propose a methodology for the automatic detection of normal, pre-ictal, and ictal conditions from recorded EEG signals. Four entropy features namely Approximate Entropy (ApEn), Sample Entropy (SampEn), Phase Entropy 1 (S1), and Phase Entropy 2 (S2) were extracted from the collected EEG signals. These features were fed to seven different classifiers: Fuzzy Sugeno Classifier (FSC), Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Probabilistic Neural Network (PNN), Decision Tree (DT), Gaussian Mixture Model (GMM), and Naive Bayes Classifier (NBC). Our results show that the Fuzzy classifier was able to differentiate the three classes with a high accuracy of 98.1%. Overall, compared to previous techniques, our proposed strategy is more suitable for diagnosis of epilepsy with higher accuracy.

Automated diagnosis of epileptic EEG using entropies / Acharya, U. R.; Molinari, Filippo; Sree, V.; Chattopadhyay, S.; Nge, K. W.; Suri, J. S.. - In: BIOMEDICAL SIGNAL PROCESSING AND CONTROL. - ISSN 1746-8094. - ELETTRONICO. - 7:4(2012), pp. 401-408. [10.1016/j.bspc.2011.07.007]

Automated diagnosis of epileptic EEG using entropies

MOLINARI, FILIPPO;
2012

Abstract

Epilepsy is a neurological disorder characterized by the presence of recurring seizures. Like many other neurological disorders, epilepsy can be assessed by the electroencephalogram (EEG). The EEG signal is highly non-linear and non-stationary, and hence, it is difficult to characterize and interpret it. However, it is a well-established clinical technique with low associated costs. In this work, we propose a methodology for the automatic detection of normal, pre-ictal, and ictal conditions from recorded EEG signals. Four entropy features namely Approximate Entropy (ApEn), Sample Entropy (SampEn), Phase Entropy 1 (S1), and Phase Entropy 2 (S2) were extracted from the collected EEG signals. These features were fed to seven different classifiers: Fuzzy Sugeno Classifier (FSC), Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Probabilistic Neural Network (PNN), Decision Tree (DT), Gaussian Mixture Model (GMM), and Naive Bayes Classifier (NBC). Our results show that the Fuzzy classifier was able to differentiate the three classes with a high accuracy of 98.1%. Overall, compared to previous techniques, our proposed strategy is more suitable for diagnosis of epilepsy with higher accuracy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2460562
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo