Space-time can be treated as a four-dimensional material continuum. The corresponding generally curved manifold can be thought of as having been obtained, by continuous deformation, from a four-dimensional Euclidean manifold. In a three-dimensional ordinary situation such a deformation process would lead to strain in the manifold. Strain in turn may be read as half the di®erence between the actual metric tensor and the Euclidean metric tensor of the initial unstrained manifold. On the other side we know that an ordinary material would react to the attempt to introduce strain giving rise to internal stresses and one would have correspondingly a deformation energy term. Assuming the conditions of linear elasticity hold, the deformation energy is easily written in terms of the strain tensor. The Einstein-Hilbert action is generalized to include the new deformation energy term. The new action for space-time has been applied to a Friedmann-Lemaitre- Robertson-Walker universe filled with dust and radiation. The accelerated expansion is recovered, then the theory has been put through four cosmological tests: primordial isotopic abundances from Big Bang Nucleosynthesis; Acoustic Scale of the CMB; Large Scale Structure formation; luminosity/redshift relation for type Ia supernovae. The result is satisfying and has allowed to evaluate the parameters of the theory.

A STRAINED SPACE-TIME TO EXPLAIN THE LARGE SCALEPROPERTIES OF THE UNIVERSE / Tartaglia, Angelo. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS CONFERENCE SERIES. - ISSN 2010-1945. - STAMPA. - 3:(2011), pp. 303-311. [10.1142/S2010194511001401]

A STRAINED SPACE-TIME TO EXPLAIN THE LARGE SCALEPROPERTIES OF THE UNIVERSE

TARTAGLIA, Angelo
2011

Abstract

Space-time can be treated as a four-dimensional material continuum. The corresponding generally curved manifold can be thought of as having been obtained, by continuous deformation, from a four-dimensional Euclidean manifold. In a three-dimensional ordinary situation such a deformation process would lead to strain in the manifold. Strain in turn may be read as half the di®erence between the actual metric tensor and the Euclidean metric tensor of the initial unstrained manifold. On the other side we know that an ordinary material would react to the attempt to introduce strain giving rise to internal stresses and one would have correspondingly a deformation energy term. Assuming the conditions of linear elasticity hold, the deformation energy is easily written in terms of the strain tensor. The Einstein-Hilbert action is generalized to include the new deformation energy term. The new action for space-time has been applied to a Friedmann-Lemaitre- Robertson-Walker universe filled with dust and radiation. The accelerated expansion is recovered, then the theory has been put through four cosmological tests: primordial isotopic abundances from Big Bang Nucleosynthesis; Acoustic Scale of the CMB; Large Scale Structure formation; luminosity/redshift relation for type Ia supernovae. The result is satisfying and has allowed to evaluate the parameters of the theory.
File in questo prodotto:
File Dimensione Formato  
Rio2011-AT.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 261.93 kB
Formato Adobe PDF
261.93 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2424149
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo