Solid tumors must recruit and form new blood vessels for maintenance, growth and detachments of metastases. Discovering drugs that block malignant angiogenesis is thus an important approach in cancer treatment and has given rise to multiple in vitro and in silico models. The present hybrid individual cell-based model incorporates some underlying biochemical events relating more closely the classical Cellular Potts Model (CPM) parameters to subcellular mechanisms and to the activation of specific signaling pathways. The model spans the three fundamental biological levels: at the extracellular level a continuous model describes secretion, diffusion, uptake and decay of the autocrine VEGF; at the cellular level, an extended lattice CPM, based on a system energy reduction, reproduces cell dynamics such as migration, adhesion and chemotaxis; at the subcellular level, a set of reaction-diffusion equations describes a simplified VEGF-induced calcium-dependent intracellular pathway. The results agree with the known interplay between calcium signals and VEGF dynamics and with their role in malignant vasculogenesis. Moreover, the analysis of the link between the microscopic subcellular dynamics and the macroscopic cell behaviors confirms the efficiency of some pharmacological interventions that are currently in use and, more interestingly, proposes some new therapeutic approaches, that are counter-intuitive but potentially effective.

A multiscale hybrid approach for vasculogenesis and related potential blocking therapies / Scianna, Marco; L., Munaron; Preziosi, Luigi. - In: PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY. - ISSN 0079-6107. - 106:2(2011), pp. 450-462. [10.1016/j.pbiomolbio.2011.01.004]

A multiscale hybrid approach for vasculogenesis and related potential blocking therapies

SCIANNA, MARCO;PREZIOSI, LUIGI
2011

Abstract

Solid tumors must recruit and form new blood vessels for maintenance, growth and detachments of metastases. Discovering drugs that block malignant angiogenesis is thus an important approach in cancer treatment and has given rise to multiple in vitro and in silico models. The present hybrid individual cell-based model incorporates some underlying biochemical events relating more closely the classical Cellular Potts Model (CPM) parameters to subcellular mechanisms and to the activation of specific signaling pathways. The model spans the three fundamental biological levels: at the extracellular level a continuous model describes secretion, diffusion, uptake and decay of the autocrine VEGF; at the cellular level, an extended lattice CPM, based on a system energy reduction, reproduces cell dynamics such as migration, adhesion and chemotaxis; at the subcellular level, a set of reaction-diffusion equations describes a simplified VEGF-induced calcium-dependent intracellular pathway. The results agree with the known interplay between calcium signals and VEGF dynamics and with their role in malignant vasculogenesis. Moreover, the analysis of the link between the microscopic subcellular dynamics and the macroscopic cell behaviors confirms the efficiency of some pharmacological interventions that are currently in use and, more interestingly, proposes some new therapeutic approaches, that are counter-intuitive but potentially effective.
File in questo prodotto:
File Dimensione Formato  
CalciumSignalsRevised.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri
A multiscale hybrid approach for vasculogenesis and relatedpotential blocking therapies.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2390064
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo