Coherent-detection (CoD) permits to fully exploit the fourdimensional (4D) signal space consisting of the in-phase and quadrature components of the two fiber polarizations. A well-known and successful format exploiting such 4D space is Polarization-multiplexed QPSK (PM-QPSK). Recently, new signal constellations specifically designed and optimized in 4D space have been proposed, among which polarizationswitched QPSK (PS-QPSK), consisting of a 8-point constellation at the vertices of a 4D polychoron called hexadecachoron. We call it HEXA because of its geometrical features and to avoid acronym mix-up with PM-QPSK, as well as with other similar acronyms. In this paper we investigate the performance of HEXA in direct comparison with PM-QPSK, addressing non-linear propagation over realistic links made up of 20 spans of either standard single mode fiber (SSMF) or non-zero dispersion-shifted fiber (NZDSF). We show that HEXA not only confirms its theoretical sensitivity advantage over PM-QPSK in back-to-back, but also shows a greater resilience to non-linear effects, allowing for substantially increased span loss margins. As a consequence, HEXA appears as an interesting option for dual-format transceivers capable to switch on-the-fly between PM-QPSK and HEXA when channel propagation degrades. It also appears as a possible direct competitor of PM-QPSK, especially over NZDSF fiber and uncompensated links.

Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects / Poggiolini, Pierluigi; Bosco, Gabriella; Carena, Andrea; Curri, Vittorio; Forghieri, F.. - In: OPTICS EXPRESS. - ISSN 1094-4087. - ELETTRONICO. - 18:11(2010), pp. 11360-11371. [10.1364/OE.18.011360]

Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects

POGGIOLINI, PIERLUIGI;BOSCO, GABRIELLA;CARENA, Andrea;CURRI, Vittorio;
2010

Abstract

Coherent-detection (CoD) permits to fully exploit the fourdimensional (4D) signal space consisting of the in-phase and quadrature components of the two fiber polarizations. A well-known and successful format exploiting such 4D space is Polarization-multiplexed QPSK (PM-QPSK). Recently, new signal constellations specifically designed and optimized in 4D space have been proposed, among which polarizationswitched QPSK (PS-QPSK), consisting of a 8-point constellation at the vertices of a 4D polychoron called hexadecachoron. We call it HEXA because of its geometrical features and to avoid acronym mix-up with PM-QPSK, as well as with other similar acronyms. In this paper we investigate the performance of HEXA in direct comparison with PM-QPSK, addressing non-linear propagation over realistic links made up of 20 spans of either standard single mode fiber (SSMF) or non-zero dispersion-shifted fiber (NZDSF). We show that HEXA not only confirms its theoretical sensitivity advantage over PM-QPSK in back-to-back, but also shows a greater resilience to non-linear effects, allowing for substantially increased span loss margins. As a consequence, HEXA appears as an interesting option for dual-format transceivers capable to switch on-the-fly between PM-QPSK and HEXA when channel propagation degrades. It also appears as a possible direct competitor of PM-QPSK, especially over NZDSF fiber and uncompensated links.
2010
File in questo prodotto:
File Dimensione Formato  
2010 OPT EXP HEXA.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 746 kB
Formato Adobe PDF
746 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2375477
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo