The use of methyl acetate instead of methanol for supercritical synthesis of glycerol-free biodiesel from vegetable oils is a new process and its study is very limited in the literature. In this work, it has been tested for the first time on three edible and non-edible oils with different fatty acid composition. The process was also applied to waste oil with higher free fatty acid (FFA) content. The results demonstrate that the oil composition does not significantly influence the biodiesel yield. The influence of temperature, pressure and molar ratio of reactants was studied. All the oils achieved complete conversion after 50 min at 345 C, 20 MPa with methyl acetate:oil molar ratio equal to 42:1. The obtained data also allowed calculating the apparent rate coefficients and activation energies. Eventually, some new information on the process was obtained. Thermal degradation of triacetin, which substitutes glycerol as the by-product of the transesterification reaction, was observed. Some indicative experiments were performed to understand the role of the acetic acid produced by FFA esterification.
Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification / Campanelli, Pasquale; Banchero, Mauro; Manna, Luigi. - In: FUEL. - ISSN 0016-2361. - STAMPA. - 89:(2010), pp. 3675-3682. [10.1016/j.fuel.2010.07.033]
Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification
CAMPANELLI, PASQUALE;BANCHERO, Mauro;MANNA, LUIGI
2010
Abstract
The use of methyl acetate instead of methanol for supercritical synthesis of glycerol-free biodiesel from vegetable oils is a new process and its study is very limited in the literature. In this work, it has been tested for the first time on three edible and non-edible oils with different fatty acid composition. The process was also applied to waste oil with higher free fatty acid (FFA) content. The results demonstrate that the oil composition does not significantly influence the biodiesel yield. The influence of temperature, pressure and molar ratio of reactants was studied. All the oils achieved complete conversion after 50 min at 345 C, 20 MPa with methyl acetate:oil molar ratio equal to 42:1. The obtained data also allowed calculating the apparent rate coefficients and activation energies. Eventually, some new information on the process was obtained. Thermal degradation of triacetin, which substitutes glycerol as the by-product of the transesterification reaction, was observed. Some indicative experiments were performed to understand the role of the acetic acid produced by FFA esterification.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2371746
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo