Let $k$ be an algebraically closed field of characteristic $0$ and let $\Hilb_{d}^{G}(\p{N})$ be the open locus of the Hilbert scheme $\Hilb_{d}(\p{N})$ corresponding to Gorenstein subschemes. We proved in a previous paper that $\Hilb_{d}^{G}(\p{N})$ is irreducible for $d\le9$ and $N\ge1$. In the present paper we prove that also $\Hilb_{10}^{G}(\p{N})$ is irreducible for each $N\ge1$, giving also a complete description of its singular locus.
On the irriducibility and singularities of the Gorenstein locus of the punctual Hilbert scheme of degree 10 / CASNATI G.; NOTARI R.. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - STAMPA. - 215:6(2011), pp. 1243-1254. [10.1016/j.jpaa.2010.08.008]
Titolo: | On the irriducibility and singularities of the Gorenstein locus of the punctual Hilbert scheme of degree 10 | |
Autori: | ||
Data di pubblicazione: | 2011 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jpaa.2010.08.008 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
sdarticle.pdf | 2. Post-print / Author's Accepted Manuscript | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2371288