In this work, beamelements based on different kinematic assumptions are combined through the Arlequinmethod. Computational costs are reduced assuming refined models only in those zones with a quasi-three-dimensional stress field. Variable kinematics beamelements are formulated on the basis of a unified formulation (UF). This formulation is extended to the Arlequinmethod to derive matrices related to the coupling zones between high- and low-order kinematicbeam theories. According to UF, a N-order polynomials approximation is assumed on the beam cross-section for the unknown displacements, being N a free parameter of the formulation. Several hierarchical finite elements can be formulated. Part of the structure can be accurately modelled with computationally cheap low-order elements, part calls for computationally demanding high-order elements. Slender, moderately deep and deep beams are investigated. Square and I-shaped cross-sections are accounted for. A cross-ply laminated composite beam is considered as well. Results are assessed towards Navier-type analytical models and three-dimensional finite element solutions. The numerical investigation has shown that Arlequinmethod in the context of a hierarchical formulation effectively couples sub-domains having different order finite elements without loss of accuracy and reducing the computational cost.
Variable kinematic beam elements coupled via Arlequin method / Biscani, Fabio; Giunta, Gaetano; S., Belouettar; Carrera, Erasmo; H., Hud. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - 93:2(2011), pp. 697-708. [10.1016/j.compstruct.2010.08.009]
Variable kinematic beam elements coupled via Arlequin method
BISCANI, FABIO;GIUNTA, GAETANO;CARRERA, Erasmo;
2011
Abstract
In this work, beamelements based on different kinematic assumptions are combined through the Arlequinmethod. Computational costs are reduced assuming refined models only in those zones with a quasi-three-dimensional stress field. Variable kinematics beamelements are formulated on the basis of a unified formulation (UF). This formulation is extended to the Arlequinmethod to derive matrices related to the coupling zones between high- and low-order kinematicbeam theories. According to UF, a N-order polynomials approximation is assumed on the beam cross-section for the unknown displacements, being N a free parameter of the formulation. Several hierarchical finite elements can be formulated. Part of the structure can be accurately modelled with computationally cheap low-order elements, part calls for computationally demanding high-order elements. Slender, moderately deep and deep beams are investigated. Square and I-shaped cross-sections are accounted for. A cross-ply laminated composite beam is considered as well. Results are assessed towards Navier-type analytical models and three-dimensional finite element solutions. The numerical investigation has shown that Arlequinmethod in the context of a hierarchical formulation effectively couples sub-domains having different order finite elements without loss of accuracy and reducing the computational cost.File | Dimensione | Formato | |
---|---|---|---|
2342046.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.55 MB
Formato
Adobe PDF
|
1.55 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2342046
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo