This paper presents an approach for the optimal design of a new retrofit technique called weakening and damping that is valid for civil engineering inelastic structures. An alternative design methodology is developed with respect to the existing ones that is able to determine the locations and the magnitude of weakening and/or softening of structural elements and adding damping while insuring structural stability. An optimal polynomial controller that is a summation of polynomials in nonlinear states is used in Phase 1 of the method to reduce the peak response quantities of seismically excited nonlinear or hysteretic systems. The main advantage of the optimal polynomial controller is that it is able to automatically stabilize the structural system. The optimal design of a shear-type structure is used as an example to illustrate the feasibility of the proposed approach, which leads to a reduction of both peak inter-story drifts and peak total accelerations.

Optimal weakening and damping using polynomial control for seismically excited nonlinear structures / Cimellaro, GIAN PAOLO. - In: EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION. - ISSN 1671-3664. - 8(4):(2009), pp. 607-616. [10.1007/s11803-009-9124-2]

Optimal weakening and damping using polynomial control for seismically excited nonlinear structures

CIMELLARO, GIAN PAOLO
2009

Abstract

This paper presents an approach for the optimal design of a new retrofit technique called weakening and damping that is valid for civil engineering inelastic structures. An alternative design methodology is developed with respect to the existing ones that is able to determine the locations and the magnitude of weakening and/or softening of structural elements and adding damping while insuring structural stability. An optimal polynomial controller that is a summation of polynomials in nonlinear states is used in Phase 1 of the method to reduce the peak response quantities of seismically excited nonlinear or hysteretic systems. The main advantage of the optimal polynomial controller is that it is able to automatically stabilize the structural system. The optimal design of a shear-type structure is used as an example to illustrate the feasibility of the proposed approach, which leads to a reduction of both peak inter-story drifts and peak total accelerations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2291610
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo