In the photogrammetry field, interest in region detectors, which are widely used in Computer Vision, is quickly increasing due to the availability of new techniques. Images acquired by Mobile Mapping Technology, Oblique Photogrammetric Cameras or Unmanned Aerial Vehicles do not observe normal acquisition conditions. Feature extraction and matching techniques, which are traditionally used in photogrammetry, are usually inefficient for these applications as they are unable to provide reliable results underextreme geometrical conditions (convergent taking geometry, strong affine transformations, etc.) and for bad-textured images. A performance analysis of the SIFT technique in aerial and close-range photogrammetric applications is presented in this paper. The goal is to establish the suitability of the SIFT technique for automatic tie point extraction and approximate DSM (Digital Surface Model) generation. First, the performances of the SIFT operator have been compared with those provided by feature extraction and matching techniques used in photogrammetry. All these techniques have been implemented by the authors and validated on aerial and terrestrial images. Moreover, an auto-adaptive version of the SIFT operator has been developed, in order to improve the performances of the SIFT detector in relation to the texture of the images. The Auto-Adaptive SIFT operator (A2 SIFT) has been validated on several aerial images, with particular attention to large scale aerial images acquired using mini-UAV systems.

PERFORMANCE ANALYSIS OF THE SIFT OPERATOR FOR AUTOMATIC FEATURE EXTRACTION AND MATCHING IN PHOTOGRAMMETRIC APPLICATIONS / Lingua, Andrea Maria; Marenchino, Davide; Nex, FRANCESCO CARLO. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 9:5(2009), pp. 3745-3766. [10.3390/s90503745]

PERFORMANCE ANALYSIS OF THE SIFT OPERATOR FOR AUTOMATIC FEATURE EXTRACTION AND MATCHING IN PHOTOGRAMMETRIC APPLICATIONS

LINGUA, Andrea Maria;MARENCHINO, DAVIDE;NEX, FRANCESCO CARLO
2009

Abstract

In the photogrammetry field, interest in region detectors, which are widely used in Computer Vision, is quickly increasing due to the availability of new techniques. Images acquired by Mobile Mapping Technology, Oblique Photogrammetric Cameras or Unmanned Aerial Vehicles do not observe normal acquisition conditions. Feature extraction and matching techniques, which are traditionally used in photogrammetry, are usually inefficient for these applications as they are unable to provide reliable results underextreme geometrical conditions (convergent taking geometry, strong affine transformations, etc.) and for bad-textured images. A performance analysis of the SIFT technique in aerial and close-range photogrammetric applications is presented in this paper. The goal is to establish the suitability of the SIFT technique for automatic tie point extraction and approximate DSM (Digital Surface Model) generation. First, the performances of the SIFT operator have been compared with those provided by feature extraction and matching techniques used in photogrammetry. All these techniques have been implemented by the authors and validated on aerial and terrestrial images. Moreover, an auto-adaptive version of the SIFT operator has been developed, in order to improve the performances of the SIFT detector in relation to the texture of the images. The Auto-Adaptive SIFT operator (A2 SIFT) has been validated on several aerial images, with particular attention to large scale aerial images acquired using mini-UAV systems.
File in questo prodotto:
File Dimensione Formato  
sensors_sift.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 669.46 kB
Formato Adobe PDF
669.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1995913
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo