An overview of the various transformations of isothermic surfaces and their interrelations is given using a quaternionic formalism. Applications to the theory of cmc-1 surfaces in hyperbolic space are given and relations between the two theories are discussed. Within this context, we give Möbius geometric characterizations for cmc-1 surfaces in hyperbolic space and their minimal cousins.

Geometry of constant mean curvature one surfaces in Hyperbolic space / HERTRICH JEROMIN, U; Musso, Emilio; Nicolodi, L.. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - STAMPA. - 19:2(2001), pp. 185-205. [10.1023/A:1010738712475]

Geometry of constant mean curvature one surfaces in Hyperbolic space

MUSSO, EMILIO;
2001

Abstract

An overview of the various transformations of isothermic surfaces and their interrelations is given using a quaternionic formalism. Applications to the theory of cmc-1 surfaces in hyperbolic space are given and relations between the two theories are discussed. Within this context, we give Möbius geometric characterizations for cmc-1 surfaces in hyperbolic space and their minimal cousins.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1995024
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo