In this paper we apply the Cartan-Kähler theory of exterior differential systems to solve the Cauchy problem for the integrable system of Lie minimal surfaces and discuss the underlying geometry. One purpose for this work is to show how methods and language from the theory of exterior differential systems may prove to be useful in the study of real analytic initial value problems, especially for gaining insight into the geometric aspects of the initial conditions and the solutions.

On the Cauchy problem for the integrable system of Lie -minimal surfaces / Musso, Emilio; Nicolodi, L.. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. - STAMPA. - 46:(2005), pp. 3509-3523. [10.1063/1.2116267]

On the Cauchy problem for the integrable system of Lie -minimal surfaces

MUSSO, EMILIO;
2005

Abstract

In this paper we apply the Cartan-Kähler theory of exterior differential systems to solve the Cauchy problem for the integrable system of Lie minimal surfaces and discuss the underlying geometry. One purpose for this work is to show how methods and language from the theory of exterior differential systems may prove to be useful in the study of real analytic initial value problems, especially for gaining insight into the geometric aspects of the initial conditions and the solutions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/1994214
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo