We consider a nearest neighbors random walk on Z. The jump rate from site x to site x+1 is equal to the jump rate from x +1 to x and is a bounded, strictly positive random variable eta(x). We assume that {eta(x)} with x∈Z is distributed by a locally ergodic probability measure. We prove that, under diffusive scaling of space and time, the random walk converges in distribution to the diffusion process on R with infinitesimal generator d/dX(a(X)d/dX), for a certain homogenized diffusion function a(X), independent of eta . The main tools of the proof are a local ergodic result and the explicit solution of the corresponding Poisson equation.
Titolo: | Homogenization of a bond diffusion in a locally ergodic random environment |
Autori: | |
Data di pubblicazione: | 2004 |
Rivista: | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
RWRE.pdf | 2. Post-print | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/11583/1950110
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.