The activation, growth and death of animal cells are accompanied by changes in the chemical composition of the surrounding environment. Cells and their microscopic environment constitute therefore a cellular ecosystem whose time-evolution determines processes of interest for either biology (e.g. animal development) and medicine (e.g. tumor spreading, immune response). In this paper, we consider a general stochastic model of the interplay between cells and environmental cellular niches. Niches may be either favourable or unfavourable in sustaining cell activation, growth and death, the state of the niches depending on the state of the cells. Under the hypothesis of random coupling between the state of the environmental niche and the state of the cell, the rescaled model reduces to a set of four non-linear differential equations. The biological meaning of the model is studied and illustrated by fitting experimental data on the growth of multicellular tumor spheroids. A detailed analysis of the stochastic model, of its deterministic limit, and of normal fluctuations is provided.

Proliferation and Death in a Binary Environment : a Stochastic Model of Cellular Ecosystems / Chignola, R.; DAI PRA, P.; Morato, L. M.; Siri, Paola. - In: BULLETIN OF MATHEMATICAL BIOLOGY. - ISSN 0092-8240. - STAMPA. - 68:(2006), pp. 1661-1680. [10.1007/s11538-006-9078-8]

Proliferation and Death in a Binary Environment : a Stochastic Model of Cellular Ecosystems

SIRI, PAOLA
2006

Abstract

The activation, growth and death of animal cells are accompanied by changes in the chemical composition of the surrounding environment. Cells and their microscopic environment constitute therefore a cellular ecosystem whose time-evolution determines processes of interest for either biology (e.g. animal development) and medicine (e.g. tumor spreading, immune response). In this paper, we consider a general stochastic model of the interplay between cells and environmental cellular niches. Niches may be either favourable or unfavourable in sustaining cell activation, growth and death, the state of the niches depending on the state of the cells. Under the hypothesis of random coupling between the state of the environmental niche and the state of the cell, the rescaled model reduces to a set of four non-linear differential equations. The biological meaning of the model is studied and illustrated by fitting experimental data on the growth of multicellular tumor spheroids. A detailed analysis of the stochastic model, of its deterministic limit, and of normal fluctuations is provided.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1950103
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo