A modified gel casting procedure based on a natural gelatin for food industry and commercial polyethylene spheres as pore formers was successfully exploited to produce dense and porous ceramic bodies made of yttria stabilized tetragonal zirconia polycrystal (Y-TZP). Vickers and Knoop microhardness, elastic modulus and fracture toughness measurements on dense samples obtained by experimental investigation closely matched results found in the literature for similar materials. However, after a careful analysis of obtained results, no indentation size effect and a lower scattering of experimental data from low load indentations were observed, in comparison with literature. Mechanical testing of porous samples (with reproducible values of porosity of about 40%) evidenced a high scattering of compressive strength values, suggesting that the uneven distribution of cavities in the material or the presence of defects from the agglomeration of pore forming agents could have a more direct influence on the mechanical properties of such materials than the absolute value of porosity.

Preparation and mechanical characterization of dense and porous zirconia produced by gel casting with gelatin as a gelling agent / Tulliani, Jean Marc Christian; Bartuli, C; Bemporad, E; Naglieri, Valentina; Sebastiani, M.. - In: CERAMICS INTERNATIONAL. - ISSN 0272-8842. - STAMPA. - 35:(2009), pp. 2481-2491. [10.1016/j.ceramint.2009.02.017]

Preparation and mechanical characterization of dense and porous zirconia produced by gel casting with gelatin as a gelling agent

TULLIANI, Jean Marc Christian;NAGLIERI, VALENTINA;
2009

Abstract

A modified gel casting procedure based on a natural gelatin for food industry and commercial polyethylene spheres as pore formers was successfully exploited to produce dense and porous ceramic bodies made of yttria stabilized tetragonal zirconia polycrystal (Y-TZP). Vickers and Knoop microhardness, elastic modulus and fracture toughness measurements on dense samples obtained by experimental investigation closely matched results found in the literature for similar materials. However, after a careful analysis of obtained results, no indentation size effect and a lower scattering of experimental data from low load indentations were observed, in comparison with literature. Mechanical testing of porous samples (with reproducible values of porosity of about 40%) evidenced a high scattering of compressive strength values, suggesting that the uneven distribution of cavities in the material or the presence of defects from the agglomeration of pore forming agents could have a more direct influence on the mechanical properties of such materials than the absolute value of porosity.
File in questo prodotto:
File Dimensione Formato  
Preparation and mechanical characterization of dense and porous zirconia.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1916806
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo