With the increasing use of artificial organs, blood damage has been raising ever more clinical concern. Blood trauma is in fact a major complication resulting from the implantation of medical devices and the use of life support apparatuses. Red blood cells damage predictive models furnish critical information on both the design and the evaluation of artificial organs, because their correct usage and implementation are thought to provide clear and rational guidance for the improvement of safety and efficacy. The currently adopted power-law shear-induced haemolysis prediction model lacks sensitivity with respect to the cumulative effect of previously applied stress magnitudes. An alternative model is proposed where a mechanical quantity was defined, able to describe the blood damage sustained by red cells under unsteady stress conditions, taking into account the load history. The proposed formulation predicted the same trend as the available experimental data. The obtained results have to be considered a preliminary validation of the basic hypothesis of this modified red blood cell damage prediction model. To date, the necessity to design further experiments to validate the proposed damage function clashes with the limitations inherent to current systems to get the time-varying shear stress completely under control.

A novel formulation for blood trauma prediction by a modified power-law mathematical model / Grigioni, M.; Morbiducci, Umberto; D’Avenio, G.; DI BENEDETTO, Giacomo; Del Gaudio, C. .. - In: BIOMECHANICS AND MODELING IN MECHANOBIOLOGY. - ISSN 1617-7959. - 4:4(2005), pp. 249-260. [10.1007/s10237-005-0005-y]

A novel formulation for blood trauma prediction by a modified power-law mathematical model

MORBIDUCCI, UMBERTO;DI BENEDETTO, GIACOMO;
2005

Abstract

With the increasing use of artificial organs, blood damage has been raising ever more clinical concern. Blood trauma is in fact a major complication resulting from the implantation of medical devices and the use of life support apparatuses. Red blood cells damage predictive models furnish critical information on both the design and the evaluation of artificial organs, because their correct usage and implementation are thought to provide clear and rational guidance for the improvement of safety and efficacy. The currently adopted power-law shear-induced haemolysis prediction model lacks sensitivity with respect to the cumulative effect of previously applied stress magnitudes. An alternative model is proposed where a mechanical quantity was defined, able to describe the blood damage sustained by red cells under unsteady stress conditions, taking into account the load history. The proposed formulation predicted the same trend as the available experimental data. The obtained results have to be considered a preliminary validation of the basic hypothesis of this modified red blood cell damage prediction model. To date, the necessity to design further experiments to validate the proposed damage function clashes with the limitations inherent to current systems to get the time-varying shear stress completely under control.
File in questo prodotto:
File Dimensione Formato  
1910130.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 340.47 kB
Formato Adobe PDF
340.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/1910130
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo