In this paper, some of the latest advances in real-time load-pull technologies will be described. A recently introduced ultralow-loss directional coupler, which has been designed and realized by the authors, provides a number of advantages when used in load-pull test sets. This device has been called the load-pull head. The new ultralow-loss load-pull head can transform any passive precalibrated load-pull system into an easily calibrated and accurate real-time load-pull test set, without losing highreflection- coefficient capabilities. Moreover, if used to realize an active loop, the load-pull head reduces the risks of oscillations and the amount of the loop amplifier output power. As an example application, measurements with a passive real-time load-pull setup of a 30-W laterally diffused MOS (LDMOS) transistor are presented. Furthermore, some advice to bypass the remaining unavoidable losses due to probes and cables is given.We will show, with measurements and with very simple calculations, that the combined use of load-pull heads, a passive tuner, and an active loop not only boosts the available ΓL but also decreases the loop amplifier output power, with a sensible reduction in the overall cost of the system.

Recent Advances in Real-Time Load-Pull Systems / Teppati, Valeria; Ferrero, ANDREA PIERENRICO; Pisani, Umberto. - In: IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. - ISSN 0018-9456. - STAMPA. - 57:(2008), pp. 2640-2646. [10.1109/TIM.2008.926044]

Recent Advances in Real-Time Load-Pull Systems

TEPPATI, VALERIA;FERRERO, ANDREA PIERENRICO;PISANI, Umberto
2008

Abstract

In this paper, some of the latest advances in real-time load-pull technologies will be described. A recently introduced ultralow-loss directional coupler, which has been designed and realized by the authors, provides a number of advantages when used in load-pull test sets. This device has been called the load-pull head. The new ultralow-loss load-pull head can transform any passive precalibrated load-pull system into an easily calibrated and accurate real-time load-pull test set, without losing highreflection- coefficient capabilities. Moreover, if used to realize an active loop, the load-pull head reduces the risks of oscillations and the amount of the loop amplifier output power. As an example application, measurements with a passive real-time load-pull setup of a 30-W laterally diffused MOS (LDMOS) transistor are presented. Furthermore, some advice to bypass the remaining unavoidable losses due to probes and cables is given.We will show, with measurements and with very simple calculations, that the combined use of load-pull heads, a passive tuner, and an active loop not only boosts the available ΓL but also decreases the loop amplifier output power, with a sensible reduction in the overall cost of the system.
File in questo prodotto:
File Dimensione Formato  
38941_UPLOAD.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 362.59 kB
Formato Adobe PDF
362.59 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1908806
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo