We review some recent investigations on prototypical SiC-based interfaces, as obtained from first-principles molecular dynamics. We discuss the interface with vacuum, and the role played by surface reconstruction in SiC homoepitaxy, and adatom diffusion. Then we move to the description of a buried, highly mismatched semiconductor interface, the one which occurs between SiC and Si, its natural substrate for growth: in this case, the mechanism governing the creation of a network of dislocations at the SiC/Si interface is presented, along with a microscopic description of the dislocation core. Finally, we describe a template solid/liquid interface, water on SiC: based on the predicted structure of SiC surfaces covered with water molecules, we propose (i) a way of nanopatterning cubic SiC(001) for the attachment of biomolecules and (ii) experiments to reveal the local geometry of adsorbed water.
First principles simulations of SiC-based interfaces / Catellani, A; Cicero, Giancarlo; Righi, M. C.; Pignedoli, C. A.. - 483-485:(2005), pp. 541-546. [10.4028/www.scientific.net/MSF.483-485.541]
First principles simulations of SiC-based interfaces
CICERO, Giancarlo;
2005
Abstract
We review some recent investigations on prototypical SiC-based interfaces, as obtained from first-principles molecular dynamics. We discuss the interface with vacuum, and the role played by surface reconstruction in SiC homoepitaxy, and adatom diffusion. Then we move to the description of a buried, highly mismatched semiconductor interface, the one which occurs between SiC and Si, its natural substrate for growth: in this case, the mechanism governing the creation of a network of dislocations at the SiC/Si interface is presented, along with a microscopic description of the dislocation core. Finally, we describe a template solid/liquid interface, water on SiC: based on the predicted structure of SiC surfaces covered with water molecules, we propose (i) a way of nanopatterning cubic SiC(001) for the attachment of biomolecules and (ii) experiments to reveal the local geometry of adsorbed water.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/1905263
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo