We describe T -equivariant Schubert calculus on G(k, n), T being an n-dimensio- nal torus, through derivations on the exterior algebra of a free A-module of rank n, where A is the T-equivariant cohomology of a point. In particular, T-equivariant Pieri’s formulas are determined, answering a question raised by Lakshmibai, Raghavan and Sankaran (Equivariant Gi- ambelli and determinantal restriction formulas for the Grassmannian, Pure Appl. Math. Quart. 2 (2006), 699–717).

Equivariant Schubert Calculus / Gatto, Letterio; Santiago, T.. - In: ARKIV FÖR MATEMATIK. - ISSN 0004-2080. - 48:(2010), pp. 41-55. [10.1007/s11512-009-0093-5]

Equivariant Schubert Calculus

GATTO, Letterio;
2010

Abstract

We describe T -equivariant Schubert calculus on G(k, n), T being an n-dimensio- nal torus, through derivations on the exterior algebra of a free A-module of rank n, where A is the T-equivariant cohomology of a point. In particular, T-equivariant Pieri’s formulas are determined, answering a question raised by Lakshmibai, Raghavan and Sankaran (Equivariant Gi- ambelli and determinantal restriction formulas for the Grassmannian, Pure Appl. Math. Quart. 2 (2006), 699–717).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1845540
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo