We show that a message-passing process allows us to store in binary ‘‘material’’ synapses a number of random patterns which almost saturate the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g., n = 10^5–10^6). The algorithm can be turned into an online—fault tolerant—learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.
Learning by message passing in networks of discrete synapses / Braunstein, Alfredo; Zecchina, Riccardo. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 96:(2006), p. 030201. [10.1103/PhysRevLett.96.030201]
Learning by message passing in networks of discrete synapses
BRAUNSTEIN, ALFREDO;ZECCHINA, RICCARDO
2006
Abstract
We show that a message-passing process allows us to store in binary ‘‘material’’ synapses a number of random patterns which almost saturate the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g., n = 10^5–10^6). The algorithm can be turned into an online—fault tolerant—learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.File | Dimensione | Formato | |
---|---|---|---|
PRL-BIN.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
233.04 kB
Formato
Adobe PDF
|
233.04 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/1829391
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo