We show that a message-passing process allows us to store in binary ‘‘material’’ synapses a number of random patterns which almost saturate the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g., n = 10^5–10^6). The algorithm can be turned into an online—fault tolerant—learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.

Learning by message passing in networks of discrete synapses / Braunstein, Alfredo; Zecchina, Riccardo. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 96:(2006), p. 030201. [10.1103/PhysRevLett.96.030201]

Learning by message passing in networks of discrete synapses

BRAUNSTEIN, ALFREDO;ZECCHINA, RICCARDO
2006

Abstract

We show that a message-passing process allows us to store in binary ‘‘material’’ synapses a number of random patterns which almost saturate the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g., n = 10^5–10^6). The algorithm can be turned into an online—fault tolerant—learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.
File in questo prodotto:
File Dimensione Formato  
PRL-BIN.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 233.04 kB
Formato Adobe PDF
233.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1829391
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo