Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO3)2.4H2O and (b) titration of Ca(OH)2. The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N2 adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m2/g. Pure and Sisubstituted hydroxyapatite nanopowders derived from Ca(NO3)2.4H2O decomposed around 1000 °C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH)2 were thermally stable up to 1200 °C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Sisubstituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 °C Sisubstituted hydroxyapatites derived from Ca(OH)2.

Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability / Alessandra, Bianco; Ilaria, Cacciotti; Lombardi, Mariangela; Montanaro, Laura. - In: MATERIALS RESEARCH BULLETIN. - ISSN 0025-5408. - STAMPA. - 44:(2009), pp. 345-354.

Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability

LOMBARDI, MARIANGELA;MONTANARO, Laura
2009

Abstract

Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO3)2.4H2O and (b) titration of Ca(OH)2. The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N2 adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m2/g. Pure and Sisubstituted hydroxyapatite nanopowders derived from Ca(NO3)2.4H2O decomposed around 1000 °C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH)2 were thermally stable up to 1200 °C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Sisubstituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 °C Sisubstituted hydroxyapatites derived from Ca(OH)2.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1812325
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo