We extend the analysis of N = 2 extremal Black-Hole attractor equations to the case of special geometries based on homogeneous coset spaces. For non-BPS critical points (with non vanishing central charge) the (Bekenstein-Hawking) entropy formula is the same as for symmetric spaces, namely four times the square of the central charge evaluated at the critical point. For non homogeneous geometries the deviation from this formula is given in terms of geometrical data of special geometry in presence of a background symplectic charge vector.

Critical points of the black-hole potential for homogeneous special geometries / D'Auria, Riccardo; S., Ferrara; Trigiante, Mario. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2007:03(2007). [10.1088/1126-6708/2007/03/097]

Critical points of the black-hole potential for homogeneous special geometries

D'AURIA, RICCARDO;TRIGIANTE, MARIO
2007

Abstract

We extend the analysis of N = 2 extremal Black-Hole attractor equations to the case of special geometries based on homogeneous coset spaces. For non-BPS critical points (with non vanishing central charge) the (Bekenstein-Hawking) entropy formula is the same as for symmetric spaces, namely four times the square of the central charge evaluated at the critical point. For non homogeneous geometries the deviation from this formula is given in terms of geometrical data of special geometry in presence of a background symplectic charge vector.
File in questo prodotto:
File Dimensione Formato  
Riccardo_D_Auria_2007_J._High_Energy_Phys._2007_097.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 296.35 kB
Formato Adobe PDF
296.35 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1723173