We study the Dirichlet problem in a ball for the Hénon equation with critical growth and we establish, under some conditions, the existence of a positive, non radial solution. The solution is obtained as a minimizer of the quotient functional associated to the problem restricted to appropriate subspaces of H_0^1 invariant for the action of a subgroup of O(N). Analysis of compactness properties of minimizing sequences and careful level estimates are the main ingredients of the proof.

Non radial positive solutions for the Henon equation with critical growth / Serra, Enrico. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 23:(2005), pp. 301-326.

Non radial positive solutions for the Henon equation with critical growth

SERRA, Enrico
2005

Abstract

We study the Dirichlet problem in a ball for the Hénon equation with critical growth and we establish, under some conditions, the existence of a positive, non radial solution. The solution is obtained as a minimizer of the quotient functional associated to the problem restricted to appropriate subspaces of H_0^1 invariant for the action of a subgroup of O(N). Analysis of compactness properties of minimizing sequences and careful level estimates are the main ingredients of the proof.
File in questo prodotto:
File Dimensione Formato  
serra_calc.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 214.95 kB
Formato Adobe PDF
214.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1719271
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo