Let C be a general connected, smooth, projective curve of positive genus g. For each integer i ≥ 0, we give formulae for the number of pairs (P , Q) ∈ C × C off the diagonal such that (g + i − 1)Q − (i + 1)P is linearly equivalent to an effective divisor, and the number of pairs (P,Q)∈C×C off the diagonal such that (g+i+1)Q−(i+1)P is linearly equivalent to a moving effective divisor.
Special Ramification Loci on the double product of a general curve / Cumino, Caterina; Esteves, E; Gatto, Letterio. - In: QUARTERLY JOURNAL OF MATHEMATICS. - ISSN 0033-5606. - 59, no. 2:(2008), pp. 163-187. [10.1093/qmath/ham032]
Special Ramification Loci on the double product of a general curve
CUMINO, Caterina;GATTO, Letterio
2008
Abstract
Let C be a general connected, smooth, projective curve of positive genus g. For each integer i ≥ 0, we give formulae for the number of pairs (P , Q) ∈ C × C off the diagonal such that (g + i − 1)Q − (i + 1)P is linearly equivalent to an effective divisor, and the number of pairs (P,Q)∈C×C off the diagonal such that (g+i+1)Q−(i+1)P is linearly equivalent to a moving effective divisor.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/1651905
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo