The machinery developed in paper I is used to compute the operator-product algebra (OPA) of an operator constructed from the third-order Casimir invariant of the superalgebra SU(m|n). The vertex operator construction of SU(m|n)(1) is used to find a realization of the OPA for level k=1 in terms of free bosonic fields only. It turns out that in many respects the conformal structure of the affinized Lie superalgebra SU(m|n)(1) is similar to that of the Kač-Moody algebra SU(m-n)(1). An intermediate result suggests the occurrence of extended conformal symmetries in bc systems, to which we will devote a separate discussion.
Extended Sugawara construction for the superalgebras SU(M+1|N+1). II. The third-order Casimir algebra / BOUWKNEGT P; CERESOLE A.T.; VAN NIEUWENHUIZEN P; MCCARTHY J. - In: PHYSICAL REVIEW D. - ISSN 0556-2821. - 40:2(1989), pp. 415-421. [10.1103/PhysRevD.40.415]
Titolo: | Extended Sugawara construction for the superalgebras SU(M+1|N+1). II. The third-order Casimir algebra | |
Autori: | ||
Data di pubblicazione: | 1989 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1103/PhysRevD.40.415 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
1648247.pdf | 2. Post-print / Author's Accepted Manuscript | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/1648247