The interest in eddy current dampers is increasing especially in aeronautic and automotive industry. Such devices seem to be a valid alternative to conventional fluid film and viscoelastc dampers. Even if several papers have been published on this topic, an electromechanical model taking into account both the resistance and the inductance of the conductor is still lacking. The aim of the present paper is to model the electromagnetic interaction of an eddy current device operating as a damper or as a coupler and to validate it by means of experimental tests performed at steady state and vibrating about a fixed position. The study is based on the computation of the damping torque starting from the basic principles. The analytical models are developed using the bond graph formalism that allows to obtain purely mechanical analogs of the electromechanical system. The main results are the identification of eddy current damper dynamic model and the definition of a set of “conversion rules” allowing to readily obtain the mechanical impedance from the torque to slip speed characteristic and vice versa. The experimental results confirm the band limited effect of the damping, which cannot be neglected for practical applications. The effect can be exploited in eddy current couplers to filter higher order disturbances.

Dynamic modeling and experimental validation of eddy current dampers and couplers / Tonoli, Andrea; Amati, Nicola. - In: JOURNAL OF VIBRATION AND ACOUSTICS. - ISSN 1048-9002. - ELETTRONICO. - 130:2(2008), pp. 021011-1-021011-9. [10.1115/1.2827990]

Dynamic modeling and experimental validation of eddy current dampers and couplers

TONOLI, Andrea;AMATI, NICOLA
2008

Abstract

The interest in eddy current dampers is increasing especially in aeronautic and automotive industry. Such devices seem to be a valid alternative to conventional fluid film and viscoelastc dampers. Even if several papers have been published on this topic, an electromechanical model taking into account both the resistance and the inductance of the conductor is still lacking. The aim of the present paper is to model the electromagnetic interaction of an eddy current device operating as a damper or as a coupler and to validate it by means of experimental tests performed at steady state and vibrating about a fixed position. The study is based on the computation of the damping torque starting from the basic principles. The analytical models are developed using the bond graph formalism that allows to obtain purely mechanical analogs of the electromechanical system. The main results are the identification of eddy current damper dynamic model and the definition of a set of “conversion rules” allowing to readily obtain the mechanical impedance from the torque to slip speed characteristic and vice versa. The experimental results confirm the band limited effect of the damping, which cannot be neglected for practical applications. The effect can be exploited in eddy current couplers to filter higher order disturbances.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1644203
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo