We prove a homogenization theorem for non-convex functionals depending on vector-valued functions, defined on Sobolev spaces with respect to oscillating measures. The proof combines the use of the localization methods of -convergence with a ‘discretization’ argument, which allows to link the oscillating energies to functionals defined on a single Lebesgue space, and to state the hypothesis of p-connectedness of the underlying periodic measure in a handy way.
Non convex homogenization problems for singular structures / BRAIDES A; CHIADO' PIAT V.. - In: NETWORKS AND HETEROGENEOUS MEDIA. - ISSN 1556-1801. - STAMPA. - 3:3(2008), pp. 489-508.
Titolo: | Non convex homogenization problems for singular structures |
Autori: | |
Data di pubblicazione: | 2008 |
Rivista: | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
BraidesChiadoPiatRevised_4.pdf | 2. Post-print / Author's Accepted Manuscript | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/1630916