We develop a posteriori upper and lower error bounds for mixed finite-element approximations of a general family of steady, viscous, incompressible quasi-Newtonian flows in a bounded Lipschitz domain Ω \sub Rd ; the family includes degenerate models such as the power law model, as well as non-degenerate ones such as the Carreau model. The unified theoretical framework developed herein yields residualbased a posteriori bounds which measure the error in the approximation of the velocity in the W1,r(Ω) norm and that of the pressure in the L^r'(Ω) norm, 1/r + 1/r' = 1, r 2 (1,∞).
Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows / BERRONE S.; SULI E. - In: IMA JOURNAL OF NUMERICAL ANALYSIS. - ISSN 0272-4979. - STAMPA. - 28(2008), pp. 382-421. [10.1093/imanum/drm017]
Titolo: | Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows | |
Autori: | ||
Data di pubblicazione: | 2008 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1093/imanum/drm017 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
IMA_Article_2008.pdf | 2. Post-print / Author's Accepted Manuscript | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/1625619