The present work is aimed to ascertain naphthalene biodegradation capability of P. chrysosporium and T. harzianum in soil microcosms. Considering the high naphthalene volatility, a suitable soil microcosm was set-up and used. Several degradation tests were conducted with different C/N ratio media for the two fungi in order to enquire the best range of working conditions. The kinetic studies were conducted at a maximal naphthalene concentration of 600 mg kg1. During experimental time course naphthalene concentration, CO2 evolution as well as phytotoxicity tests were performed as monitoring parameters. The results shown in the current paper, put in evidence that T. harzianum, differently than in liquid culture, is not able to biodegrade naphthalene directly in soil microcosm, while P. chrysosporium in the same conditions biodegrades the PAH till about 600 mg kg1. As concern the founded kinetics for P. chrysosporium, a saturation shape in presence of N-limited medium (high C/N ratio) was evaluated while a growing form more than linear in no-N limited medium (normal C/N ratio) was determined.

Fungal biodegradation of naphthalene: microcosms studies / Mollea, Chiara; Bosco, Francesca; Ruggeri, Bernardo. - In: CHEMOSPHERE. - ISSN 0045-6535. - STAMPA. - 60:(2005), pp. 636-643. [10.1016/j.chemosphere.2005.01.034]

Fungal biodegradation of naphthalene: microcosms studies

MOLLEA, Chiara;BOSCO, Francesca;RUGGERI, Bernardo
2005

Abstract

The present work is aimed to ascertain naphthalene biodegradation capability of P. chrysosporium and T. harzianum in soil microcosms. Considering the high naphthalene volatility, a suitable soil microcosm was set-up and used. Several degradation tests were conducted with different C/N ratio media for the two fungi in order to enquire the best range of working conditions. The kinetic studies were conducted at a maximal naphthalene concentration of 600 mg kg1. During experimental time course naphthalene concentration, CO2 evolution as well as phytotoxicity tests were performed as monitoring parameters. The results shown in the current paper, put in evidence that T. harzianum, differently than in liquid culture, is not able to biodegrade naphthalene directly in soil microcosm, while P. chrysosporium in the same conditions biodegrades the PAH till about 600 mg kg1. As concern the founded kinetics for P. chrysosporium, a saturation shape in presence of N-limited medium (high C/N ratio) was evaluated while a growing form more than linear in no-N limited medium (normal C/N ratio) was determined.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1546967
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo