Let A be a closed semialgebraic subset of Euclidean space of codimension at least one, and containing the origin O as a non–isolated point. We prove that, for every real s ≥ 1, there exists an algebraic set V which approximates A to order s at O. The special case s = 1 generalizes the result of the authors that every semialgebraic cone of codimension at least one is the tangent cone of an algebraic set.

Approximation of subanalytic sets by normal cones / Ferrarotti, Massimo; Fortuna, E.; Wilson, L.. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 39:(2007), pp. 247-254. [10.1112/blms/bdl034]

Approximation of subanalytic sets by normal cones

FERRAROTTI, Massimo;
2007

Abstract

Let A be a closed semialgebraic subset of Euclidean space of codimension at least one, and containing the origin O as a non–isolated point. We prove that, for every real s ≥ 1, there exists an algebraic set V which approximates A to order s at O. The special case s = 1 generalizes the result of the authors that every semialgebraic cone of codimension at least one is the tangent cone of an algebraic set.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1529475
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo