The aim of the paper is to evaluate the performance of a new strategy which is able to control dynamic route guidance (DRG) systems, mainly in urban road networks. The purpose of this strategy is to achieve dynamic user equilibrium in the network, even in abnormal network conditions, for example when there is an unexpected increase in traffic volume. It is based on feedback concept and it reacts to the traffic conditions observed in real time by adopting a decentralized structure. A series of experiments was performed, by means of a traffic micro-simulator, in a section of an urban road network. In the situations examined, the results seem to be quite positive. The analyses of the link level show that all of the various travel alternatives to reach the destination become more advantageous for users if DRG devices become more widespread among vehicles. In some cases we observe that the strategy succeeds in maintaining the possible alternatives in equilibrium conditions, by distributing users among the feasible turns. At no point in our investigations do we observe an unstable behaviour of the system, even when the number of vehicles fitted with a DRG device increases.
Evaluation of a reactive dynamic route guidance strategy / Deflorio, FRANCESCO PAOLO. - In: TRANSPORTATION RESEARCH. PART C, EMERGING TECHNOLOGIES. - ISSN 0968-090X. - STAMPA. - 11:5(2003), pp. 375-388. [10.1016/S0968-090X(03)00031-7]
Evaluation of a reactive dynamic route guidance strategy
DEFLORIO, FRANCESCO PAOLO
2003
Abstract
The aim of the paper is to evaluate the performance of a new strategy which is able to control dynamic route guidance (DRG) systems, mainly in urban road networks. The purpose of this strategy is to achieve dynamic user equilibrium in the network, even in abnormal network conditions, for example when there is an unexpected increase in traffic volume. It is based on feedback concept and it reacts to the traffic conditions observed in real time by adopting a decentralized structure. A series of experiments was performed, by means of a traffic micro-simulator, in a section of an urban road network. In the situations examined, the results seem to be quite positive. The analyses of the link level show that all of the various travel alternatives to reach the destination become more advantageous for users if DRG devices become more widespread among vehicles. In some cases we observe that the strategy succeeds in maintaining the possible alternatives in equilibrium conditions, by distributing users among the feasible turns. At no point in our investigations do we observe an unstable behaviour of the system, even when the number of vehicles fitted with a DRG device increases.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/1485016
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo