Three water-controlled ecosystems are studied here using the stochastic description of soil moisture dynamics and vegetation water stress proposed in Part II (F. Laio, A. Porporato, L. Ridolfi, I. Rodriguez-Iturbe, Adv. Water Res. 24 (7) (2001) 707-723) and Part III (A. Porporato, F. Laio, L. Ridolfi, I. Rodriguez-Iturbe, Adv. Water Res. 24 (7) (2001) 725-744) of this series of papers. In the savanna of Nylsvley (South Africa) the very diverse physiological characteristics of the existing plants give rise to different strategies of soil moisture exploitation. Notwithstanding these differences, the vegetation water stress for all the species turns out to be very similar, suggesting that coexistence might be attained also through differentiation of water use. The case of the savanna of Southern Texas points out how rooting depth and interannual rainfall variability can impact soil moisture dynamics and vegetation water stress. Because of the different responses to water stress of trees and grasses, external climatic forcing could be at the origin of the dynamic equilibrium allowing coexistence in this ecosystem. Finally, the analysis of a short grass steppe in Colorado provides an interesting example of the so-called inverse texture effect, whereby preferential conditions for vegetation are dependent on soil texture and rainfall. Sites which are more favorable during wet conditions may become less suitable to the same vegetation type during drier years. Such an effect is important to explain the predominance of existing species, as well as to investigate their reproductive strategies.

Plants in water controlled ecosystems: active role in hydrological processes and response to water stress. IV: Discussion of real cases / Laio, Francesco; Porporato, Amilcare; FERNADEZ ILLESCAS, C; RODRIGUEZ ITURBE, I.. - In: ADVANCES IN WATER RESOURCES. - ISSN 0309-1708. - 24:7(2001), pp. 745-762. [10.1016/S0309-1708(01)00007-0]

Plants in water controlled ecosystems: active role in hydrological processes and response to water stress. IV: Discussion of real cases

LAIO, FRANCESCO;PORPORATO, Amilcare;
2001

Abstract

Three water-controlled ecosystems are studied here using the stochastic description of soil moisture dynamics and vegetation water stress proposed in Part II (F. Laio, A. Porporato, L. Ridolfi, I. Rodriguez-Iturbe, Adv. Water Res. 24 (7) (2001) 707-723) and Part III (A. Porporato, F. Laio, L. Ridolfi, I. Rodriguez-Iturbe, Adv. Water Res. 24 (7) (2001) 725-744) of this series of papers. In the savanna of Nylsvley (South Africa) the very diverse physiological characteristics of the existing plants give rise to different strategies of soil moisture exploitation. Notwithstanding these differences, the vegetation water stress for all the species turns out to be very similar, suggesting that coexistence might be attained also through differentiation of water use. The case of the savanna of Southern Texas points out how rooting depth and interannual rainfall variability can impact soil moisture dynamics and vegetation water stress. Because of the different responses to water stress of trees and grasses, external climatic forcing could be at the origin of the dynamic equilibrium allowing coexistence in this ecosystem. Finally, the analysis of a short grass steppe in Colorado provides an interesting example of the so-called inverse texture effect, whereby preferential conditions for vegetation are dependent on soil texture and rainfall. Sites which are more favorable during wet conditions may become less suitable to the same vegetation type during drier years. Such an effect is important to explain the predominance of existing species, as well as to investigate their reproductive strategies.
File in questo prodotto:
File Dimensione Formato  
1401616.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 720.86 kB
Formato Adobe PDF
720.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/1401616
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo