In this paper, a current control scheme, based on proportional-integral regulators using sinusoidal signal integrators (SSIs), is proposed for shunt type power conditioners. The aim is to simplify the implementation of SSI-based current harmonic compensation for industrial implementations where strict limitations on the harmonic distortion of the mains' currents are required. To compensate current harmonics, the SSIs are implemented to operate both on positive and negative sequence signals. One regulator, for the fundamental current component, is implemented in the stationary reference frame. The other regulators, for the current harmonics, are all implemented in a synchronous reference frame rotating at the fundamental frequency. This allows the simultaneous compensation of two current harmonics with just one regulator, yielding a significant reduction of the computational effort compared with other current control methods employing sinusoidal signal integrators implemented in stationary reference frame. A simple and robust voltage filter is also proposed by the authors to obtain a smooth and accurate position estimation of the voltage vector at the point of common coupling (PCC) under distorted mains' voltages. The whole control algorithm has been implemented on a 16-b, fixed-point digital signal processor (DSP) platform controlling a 20-kVA power conditioner prototype. The experimental results presented in this paper for inductive and capacitive loads show the validity of the proposed solutions.

Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame / Bojoi, IUSTIN RADU; Griva, Giovanni Battista; Bostan, V.; Guerriero, M.; Farina, F.; Profumo, Francesco. - In: IEEE TRANSACTIONS ON POWER ELECTRONICS. - ISSN 0885-8993. - 20:6(2005), pp. 1402-1412. [10.1109/TPEL.2005.857558]

Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame

BOJOI, IUSTIN RADU;GRIVA, Giovanni Battista;PROFUMO, Francesco
2005

Abstract

In this paper, a current control scheme, based on proportional-integral regulators using sinusoidal signal integrators (SSIs), is proposed for shunt type power conditioners. The aim is to simplify the implementation of SSI-based current harmonic compensation for industrial implementations where strict limitations on the harmonic distortion of the mains' currents are required. To compensate current harmonics, the SSIs are implemented to operate both on positive and negative sequence signals. One regulator, for the fundamental current component, is implemented in the stationary reference frame. The other regulators, for the current harmonics, are all implemented in a synchronous reference frame rotating at the fundamental frequency. This allows the simultaneous compensation of two current harmonics with just one regulator, yielding a significant reduction of the computational effort compared with other current control methods employing sinusoidal signal integrators implemented in stationary reference frame. A simple and robust voltage filter is also proposed by the authors to obtain a smooth and accurate position estimation of the voltage vector at the point of common coupling (PCC) under distorted mains' voltages. The whole control algorithm has been implemented on a 16-b, fixed-point digital signal processor (DSP) platform controlling a 20-kVA power conditioner prototype. The experimental results presented in this paper for inductive and capacitive loads show the validity of the proposed solutions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1396923
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo