CARMINATI, LUCA
CARMINATI, LUCA
Dipartimento di Automatica e Informatica
091594
Hidden-Role Games: Equilibrium Concepts and Computation
2024 Carminati, Luca; Zhang, Brian Hu; Farina, Gabriele; Gatti, Nicola; Sandholm, Tuomas
Monte-Carlo Regret Minimization for Adversarial Team Games
2024 Carminati, Luca; Cacciamani, Federico
A Marriage between Adversarial Team Games and 2-player Games: Enabling Abstractions, No-regret Learning, and Subgame Solving
2022 Carminati, Luca; Cacciamani, Federico; Ciccone, Marco; Gatti, Nicola
Subgame Solving in Adversarial Team Games
2022 Zhang, Brian Hu; Carminati, Luca; Cacciamani, Federico; Farina, Gabriele; Olivieri, Pierriccardo; Gatti, Nicola; Sandholm, Tuomas
Lightweight and Scalable Model for Tweet Engagements Predictions in a Resource-constrained Environment
2021 Carminati, Luca; Lodigiani, Giacomo; Maldini, Pietro; Meta, Samuele; Metaj, Stiven; Pisa, Arcangelo; Sanvito, Alessandro; Surricchio, Mattia; Benjamin Pérez Maurera, Fernando; Bernardis, Cesare; Ferrari Dacrema, Maurizio
Public Information Representation for Adversarial Team Games
2021 Carminati, Luca; Cacciamani, Federico; Ciccone, Marco; Gatti, Nicola
Citazione | Data di pubblicazione | Autori | File |
---|---|---|---|
Hidden-Role Games: Equilibrium Concepts and Computation / Carminati, Luca; Zhang, Brian Hu; Farina, Gabriele; Gatti, Nicola; Sandholm, Tuomas. - (2024). (Intervento presentato al convegno The Twenty-Fifth ACM Conference on Economics and Computation (EC'24)). | 1-gen-2024 | Carminati, Luca + | hidden_role_games_abstract.pdf |
Monte-Carlo Regret Minimization for Adversarial Team Games / Carminati, Luca; Cacciamani, Federico. - In: INTELLIGENZA ARTIFICIALE. - ISSN 2211-0097. - (2024). [10.3233/IA-240004] | 1-gen-2024 | Carminati,Luca + | - |
A Marriage between Adversarial Team Games and 2-player Games: Enabling Abstractions, No-regret Learning, and Subgame Solving / Carminati, Luca; Cacciamani, Federico; Ciccone, Marco; Gatti, Nicola. - 162:(2022), pp. 2638-2657. (Intervento presentato al convegno 39th International Conference on Machine Learning tenutosi a Baltimore, Maryland (USA) nel 17-23 July 2022). | 1-gen-2022 | Carminati, LucaCiccone, Marco + | carminati22a.pdf |
Subgame Solving in Adversarial Team Games / Zhang, Brian Hu; Carminati, Luca; Cacciamani, Federico; Farina, Gabriele; Olivieri, Pierriccardo; Gatti, Nicola; Sandholm, Tuomas. - ELETTRONICO. - (2022). (Intervento presentato al convegno Neural Information Processing Systems 35 (NeurIPS 2022) tenutosi a New Orleans (USA) nel November 28th through December 9th 2022). | 1-gen-2022 | Carminati, Luca + | maxmargin.pdf |
Lightweight and Scalable Model for Tweet Engagements Predictions in a Resource-constrained Environment / Carminati, Luca; Lodigiani, Giacomo; Maldini, Pietro; Meta, Samuele; Metaj, Stiven; Pisa, Arcangelo; Sanvito, Alessandro; Surricchio, Mattia; Benjamin Pérez Maurera, Fernando; Bernardis, Cesare; Ferrari Dacrema, Maurizio. - (2021), pp. 28-33. (Intervento presentato al convegno 16th ACM Conference on Recommender Systems) [10.1145/3487572.3487597]. | 1-gen-2021 | Luca Carminati + | 3487572.3487597.pdf |
Public Information Representation for Adversarial Team Games / Carminati, Luca; Cacciamani, Federico; Ciccone, Marco; Gatti, Nicola. - (2021). (Intervento presentato al convegno Cooperative AI Workshop - NeurIPS 2021 tenutosi a Virtual nel 14 Dicembre 2021). | 1-gen-2021 | Luca CarminatiMarco Ciccone + | 2201.10377.pdf |