We introduce algebraic entropy for continuous endomorphisms of locally linearly compact vector spaces over a discrete field, as a natural extension of the algebraic entropy for endomorphisms of discrete vector spaces studied in Giordano Bruno and Salce (Arab J Math 1:69–87, 2012). We show that the main properties continue to hold in the general context of locally linearly compact vector spaces, in particular we extend the Addition Theorem.

Algebraic Entropy in Locally Linearly Compact Vector Spaces / Castellano, Ilaria; Bruno, Anna Giordano - In: Rings, Polynomials, and Modules[s.l] : Springer, 2017. - ISBN 9783319658728. - pp. 103-127 [10.1007/978-3-319-65874-2_6]

Algebraic Entropy in Locally Linearly Compact Vector Spaces

Castellano, Ilaria;
2017

Abstract

We introduce algebraic entropy for continuous endomorphisms of locally linearly compact vector spaces over a discrete field, as a natural extension of the algebraic entropy for endomorphisms of discrete vector spaces studied in Giordano Bruno and Salce (Arab J Math 1:69–87, 2012). We show that the main properties continue to hold in the general context of locally linearly compact vector spaces, in particular we extend the Addition Theorem.
2017
9783319658728
9783319658742
Rings, Polynomials, and Modules
File in questo prodotto:
File Dimensione Formato  
Ent-llc170515.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 202.3 kB
Formato Adobe PDF
202.3 kB Adobe PDF Visualizza/Apri
Algebraic Entropy in Locally Linearly Compact.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 443.62 kB
Formato Adobe PDF
443.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003337