This paper presents a novel machine learning-based prognostic approach for on-board electromechanical actuators. The study is centered around overcoming the limitations of model-based prognostic frameworks that rely on expensive optimization processes. Machine learning techniques were employed to map system signal characteristics directly into parameters related to fault simulation. A first test, utilizing only five of eight implemented fault types, demonstrates a highly promising potential of artificial neural networks to predict and detect faults with minimal error. A second test expands the investigation to include all fault types and provides an analysis of the model’s robustness, error rates, and computational costs. The practical outcome of the work is a viable real-time solution for fault detection and characterization in electromechanical actuators, highlighting the efficiency and effectiveness of machine learning techniques for industrial applications.

Machine Learning Based Prognostics of On-Board Electromechanical Actuators / Minisci, Edmondo; Dalla Vedova, Matteo; Alimhillaj, Parid; Baldo, Leonardo; Maggiore, Paolo (LECTURE NOTES ON MULTIDISCIPLINARY INDUSTRIAL ENGINEERING). - In: Lecture Notes on Multidisciplinary Industrial EngineeringELETTRONICO. - Berlino : Springer Nature, 2024. - ISBN 9783031489327. - pp. 148-159 [10.1007/978-3-031-48933-4_15]

Machine Learning Based Prognostics of On-Board Electromechanical Actuators

Dalla Vedova, Matteo;Baldo, Leonardo;Maggiore, Paolo
2024

Abstract

This paper presents a novel machine learning-based prognostic approach for on-board electromechanical actuators. The study is centered around overcoming the limitations of model-based prognostic frameworks that rely on expensive optimization processes. Machine learning techniques were employed to map system signal characteristics directly into parameters related to fault simulation. A first test, utilizing only five of eight implemented fault types, demonstrates a highly promising potential of artificial neural networks to predict and detect faults with minimal error. A second test expands the investigation to include all fault types and provides an analysis of the model’s robustness, error rates, and computational costs. The practical outcome of the work is a viable real-time solution for fault detection and characterization in electromechanical actuators, highlighting the efficiency and effectiveness of machine learning techniques for industrial applications.
2024
9783031489327
9783031489334
Lecture Notes on Multidisciplinary Industrial Engineering
File in questo prodotto:
File Dimensione Formato  
Pre-print Minisci.pdf

accesso riservato

Descrizione: Preprint Minisci
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 801.74 kB
Formato Adobe PDF
801.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Minisci.pdf

embargo fino al 10/01/2025

Descrizione: Full Paper Minisci
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 774.76 kB
Formato Adobe PDF
774.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Post-print_Edit_Minisci.pdf

accesso riservato

Descrizione: Post-print_Edit_Minisci
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2991506