This paper presents a novel machine learning-based prognostic approach for on-board electromechanical actuators. The study is centered around overcoming the limitations of model-based prognostic frameworks that rely on expensive optimization processes. Machine learning techniques were employed to map system signal characteristics directly into parameters related to fault simulation. A first test, utilizing only five of eight implemented fault types, demonstrates a highly promising potential of artificial neural networks to predict and detect faults with minimal error. A second test expands the investigation to include all fault types and provides an analysis of the model’s robustness, error rates, and computational costs. The practical outcome of the work is a viable real-time solution for fault detection and characterization in electromechanical actuators, highlighting the efficiency and effectiveness of machine learning techniques for industrial applications.
Machine Learning Based Prognostics of On-Board Electromechanical Actuators / Minisci, Edmondo; Dalla Vedova, Matteo; Alimhillaj, Parid; Baldo, Leonardo; Maggiore, Paolo (LECTURE NOTES ON MULTIDISCIPLINARY INDUSTRIAL ENGINEERING). - In: Lecture Notes on Multidisciplinary Industrial EngineeringELETTRONICO. - Berlino : Springer Nature, 2024. - ISBN 9783031489327. - pp. 148-159 [10.1007/978-3-031-48933-4_15]
Machine Learning Based Prognostics of On-Board Electromechanical Actuators
Dalla Vedova, Matteo;Baldo, Leonardo;Maggiore, Paolo
2024
Abstract
This paper presents a novel machine learning-based prognostic approach for on-board electromechanical actuators. The study is centered around overcoming the limitations of model-based prognostic frameworks that rely on expensive optimization processes. Machine learning techniques were employed to map system signal characteristics directly into parameters related to fault simulation. A first test, utilizing only five of eight implemented fault types, demonstrates a highly promising potential of artificial neural networks to predict and detect faults with minimal error. A second test expands the investigation to include all fault types and provides an analysis of the model’s robustness, error rates, and computational costs. The practical outcome of the work is a viable real-time solution for fault detection and characterization in electromechanical actuators, highlighting the efficiency and effectiveness of machine learning techniques for industrial applications.File | Dimensione | Formato | |
---|---|---|---|
Pre-print Minisci.pdf
non disponibili
Descrizione: Preprint Minisci
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
801.74 kB
Formato
Adobe PDF
|
801.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Minisci.pdf
embargo fino al 10/01/2025
Descrizione: Full Paper Minisci
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
774.76 kB
Formato
Adobe PDF
|
774.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Post-print_Edit_Minisci.pdf
non disponibili
Descrizione: Post-print_Edit_Minisci
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.92 MB
Formato
Adobe PDF
|
2.92 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2991506