The COP26 goals rapidly accelerate the shift of road transport to electric vehicles (EVs). However, the global transition to EVs should be assessed carefully. A forced transition to electric mobility without tailored solutions for each case can increase greenhouse gas (GHG) emissions. In this context, low-carbon fuels can be considered a promising short-term solution to efficiently reach the carbon neutrality target. This manuscript aims to highlight the competitive advantages of hydrotreated vegetable oil (HVO) over commercial diesel fuel. Recent works on HVO are considered, ranging from exploring the production processes and spray evolution characteristics to the various engine strategies to highlighting the potential. Greater emphasis was placed on environmental impact assessment, considering the results available for Life Cycle Assessment (LCA) and Well-To-Wheel. The main characteristics and influences of HVO in CI engines are assessed on the combustion process, GHGs, and pollutants emissions. The results show the high potential of the HVO to reduce the impact of the road transport sector actively. It is highly compatible with existing engines and fueling systems while ensuring lower CO2, CO, THC, PM emissions, and combustion noise levels with similar efficiency and fuel consumption. Additionally, the residual feedstock can assure up to 75% GHG over the whole life cycle. Therefore, sustainable fuels, such as HVO, combined with advanced technologies could not only support the reduction of tailpipe emissions but also benefit the overall CO2 assessment.

Hydrotreated Vegetable Oils for Compression Ignition Engines—The Way Toward a Sustainable Transport / Pipicelli, Michele; DI LUCA, Giuseppe; Ianniello, Roberto - In: Renewable Fuels for Sustainable Mobility / Shukla P. C., Belgiorno G, Di Blasio G., Agarwal A. K.. - ELETTRONICO. - [s.l] : Springer, 2023. - ISBN 978-981-99-1391-6. - pp. 11-34 [10.1007/978-981-99-1392-3_2]

Hydrotreated Vegetable Oils for Compression Ignition Engines—The Way Toward a Sustainable Transport

Giuseppe Di Luca;
2023

Abstract

The COP26 goals rapidly accelerate the shift of road transport to electric vehicles (EVs). However, the global transition to EVs should be assessed carefully. A forced transition to electric mobility without tailored solutions for each case can increase greenhouse gas (GHG) emissions. In this context, low-carbon fuels can be considered a promising short-term solution to efficiently reach the carbon neutrality target. This manuscript aims to highlight the competitive advantages of hydrotreated vegetable oil (HVO) over commercial diesel fuel. Recent works on HVO are considered, ranging from exploring the production processes and spray evolution characteristics to the various engine strategies to highlighting the potential. Greater emphasis was placed on environmental impact assessment, considering the results available for Life Cycle Assessment (LCA) and Well-To-Wheel. The main characteristics and influences of HVO in CI engines are assessed on the combustion process, GHGs, and pollutants emissions. The results show the high potential of the HVO to reduce the impact of the road transport sector actively. It is highly compatible with existing engines and fueling systems while ensuring lower CO2, CO, THC, PM emissions, and combustion noise levels with similar efficiency and fuel consumption. Additionally, the residual feedstock can assure up to 75% GHG over the whole life cycle. Therefore, sustainable fuels, such as HVO, combined with advanced technologies could not only support the reduction of tailpipe emissions but also benefit the overall CO2 assessment.
2023
978-981-99-1391-6
978-981-99-1392-3
Renewable Fuels for Sustainable Mobility
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982661
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo