An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
Model Order Reduction. Volume 2: Snapshot-Based Methods and Algorithms / Peter, Benner; GRIVET TALOCIA, Stefano; Alfio, Quarteroni; Gianluigi, Rozza; Wil, Schilders; Luís Miguel Silveira,. - ELETTRONICO. - 2:(2021), pp. 1-356. [10.1515/9783110671490]
Model Order Reduction. Volume 2: Snapshot-Based Methods and Algorithms
Stefano Grivet-Talocia;
2021
Abstract
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.File | Dimensione | Formato | |
---|---|---|---|
9783110671407.jpg
accesso aperto
Descrizione: Copertina del libro
Tipologia:
Altro materiale allegato
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
108.55 kB
Formato
JPEG
|
108.55 kB | JPEG | Visualizza/Apri |
MOR_Vol2_Front_Preface_Index.pdf
accesso aperto
Descrizione: Prefazione e Indice
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2859096