An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.

Model Order Reduction. Volume 2: Snapshot-Based Methods and Algorithms / Peter, Benner; GRIVET TALOCIA, Stefano; Alfio, Quarteroni; Gianluigi, Rozza; Wil, Schilders; Luís Miguel Silveira,. - ELETTRONICO. - 2:(2021), pp. 1-356. [10.1515/9783110671490]

Model Order Reduction. Volume 2: Snapshot-Based Methods and Algorithms

Stefano Grivet-Talocia;
2021

Abstract

An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
2021
9783110671490
9783110671407
File in questo prodotto:
File Dimensione Formato  
9783110671407.jpg

accesso aperto

Descrizione: Copertina del libro
Tipologia: Altro materiale allegato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 108.55 kB
Formato JPEG
108.55 kB JPEG Visualizza/Apri
MOR_Vol2_Front_Preface_Index.pdf

accesso aperto

Descrizione: Prefazione e Indice
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2859096