These are notes from the minicourse given by Umberto Zannier (Scuola Normale Superiore di Pisa). The notes were worked out by Laura Capuano, Peter Jossen,1 Christina Karolus, and Francesco Veneziano. Most of the material of these lectures, except for the numerical examples which were added by us, is already available in [42]. The authors wish to thank Umberto Zannier for the lively discussions in Alpbach, and Olaf Merkert for providing computations of the examples 3.17, 3.28, 3.29, 3.33, and 3.25

Hyperelliptic Continued Fractions and Generalized Jacobians: / Capuano, Laura; Jossen, Peter; Karolus, Christina; Veneziano, Francesco (ANNALS OF MATHEMATICS STUDIES). - In: Arithmetic and Geometry / Fuchs, C., Wüstholz, G.. - [s.l] : Princeton University Press, 2019. - ISBN 9780691197548. - pp. 56-101 [10.1515/9780691197548-004]

Hyperelliptic Continued Fractions and Generalized Jacobians:

Capuano, Laura;
2019

Abstract

These are notes from the minicourse given by Umberto Zannier (Scuola Normale Superiore di Pisa). The notes were worked out by Laura Capuano, Peter Jossen,1 Christina Karolus, and Francesco Veneziano. Most of the material of these lectures, except for the numerical examples which were added by us, is already available in [42]. The authors wish to thank Umberto Zannier for the lively discussions in Alpbach, and Olaf Merkert for providing computations of the examples 3.17, 3.28, 3.29, 3.33, and 3.25
2019
9780691197548
0691197547
9780691193786
Arithmetic and Geometry
File in questo prodotto:
File Dimensione Formato  
9.Hyperelliptic continued fractions.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 378.68 kB
Formato Adobe PDF
378.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2790233