Let X be a noncompact symmetric space of rank one and let h1(X) be a local atomic Hardy space. We prove the boundedness from h1(X) to L1(X) and on h1(X) of some classes of Fourier integral operators related to the wave equation associated with the Laplacian on X and we estimate the growth of their norms depending on time.
``Endpoint results for Fourier integral operators on noncompact symmetric spaces" / BRUNO, TOMMASO; TABACCO, Anita Maria; VALLARINO, MARIA. - STAMPA. - (2019), pp. 33-58.
Titolo: | ``Endpoint results for Fourier integral operators on noncompact symmetric spaces" |
Autori: | |
Data di pubblicazione: | 2019 |
Titolo del libro: | Landscapes of Time-Frequency Analysis |
Serie: | |
Abstract: | Let X be a noncompact symmetric space of rank one and let h1(X) be a local atomic Hardy space. We... prove the boundedness from h1(X) to L1(X) and on h1(X) of some classes of Fourier integral operators related to the wave equation associated with the Laplacian on X and we estimate the growth of their norms depending on time. |
ISBN: | 978-3-030-05210-2 |
Appare nelle tipologie: | 2.1 Contributo in volume (Capitolo o Saggio) |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
BTV_Endpoint_results_final.pdf | 2. Post-print / Author's Accepted Manuscript | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/11583/2725428
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.