Let X be a noncompact symmetric space of rank one and let h1(X) be a local atomic Hardy space. We prove the boundedness from h1(X) to L1(X) and on h1(X) of some classes of Fourier integral operators related to the wave equation associated with the Laplacian on X and we estimate the growth of their norms depending on time.
Endpoint results for Fourier integral operators on noncompact symmetric spaces / Bruno, Tommaso; Tabacco, Anita; Vallarino, Maria (APPLIED AND NUMERICAL HARMONIC ANALYSIS). - In: Landscapes of Time-Frequency Analysis / Boggiatto, P., Cordero, E., de Gosson, M., Feichtinger, H.G., Nicola, F., Oliaro, A., Tabacco, A.. - STAMPA. - [s.l] : Birkhäuser, 2019. - ISBN 978-3-030-05210-2. - pp. 33-58 [10.1007/978-3-030-05210-2_2]
Endpoint results for Fourier integral operators on noncompact symmetric spaces
BRUNO, TOMMASO;Anita Tabacco;Maria Vallarino
2019
Abstract
Let X be a noncompact symmetric space of rank one and let h1(X) be a local atomic Hardy space. We prove the boundedness from h1(X) to L1(X) and on h1(X) of some classes of Fourier integral operators related to the wave equation associated with the Laplacian on X and we estimate the growth of their norms depending on time.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2725428
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo