It is well known that the Multinomial Logit model for the choice probability can be obtained by considering a random utility model where the choice variables are independent and identically distributed with a Gumbel distribution. In this paper we organize and summarize existing results of the literature which show that using some results of the extreme values theory for i.i.d. random variables, the Gumbel distribution for the choice variables is not necessary anymore and any distribution which is asymptotically exponential in its tail is sufficient to obtain the Multinomial Logit model for the choice probability.

A Recent Approach to Derive the Multinomial Logit Model for Choice Probability / Tadei, Roberto; Perboli, Guido; Manerba, Daniele - In: New Trends in Emerging Complex Real Life Problems / Patrizia Daniele, Laura Scrimali. - STAMPA. - [s.l] : Springer, 2018. - ISBN 978-3-030-00472-9. - pp. 473-481 [10.1007/978-3-030-00473-6_50]

A Recent Approach to Derive the Multinomial Logit Model for Choice Probability

Tadei, Roberto;Perboli, Guido;Manerba, Daniele
2018

Abstract

It is well known that the Multinomial Logit model for the choice probability can be obtained by considering a random utility model where the choice variables are independent and identically distributed with a Gumbel distribution. In this paper we organize and summarize existing results of the literature which show that using some results of the extreme values theory for i.i.d. random variables, the Gumbel distribution for the choice variables is not necessary anymore and any distribution which is asymptotically exponential in its tail is sufficient to obtain the Multinomial Logit model for the choice probability.
2018
978-3-030-00472-9
978-3-030-00473-6
New Trends in Emerging Complex Real Life Problems
File in questo prodotto:
File Dimensione Formato  
chapter.pdf

non disponibili

Descrizione: Post-print
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
logit model_2.pdf

Open Access dal 02/12/2020

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 112.7 kB
Formato Adobe PDF
112.7 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2725056