The emergence of new technologies like Internet of Things (IoT) and Big Data has given rise to an ever increasing demand of low cost, low power, compact and simple sensor nodes to remotely observe certain physical phenomena. The indoor human detection, localization, tracking, activity monitoring and identification is very important in many contexts like health-care monitoring for elderly people living alone, ambient assisted living (AAL), security and surveillance. Capacitive sensing is a candidate technology for indoor human localization, activity monitoring and identification. Capacitive sensors, being low cost and low power devices has earned a lot of attraction from the research and scientific community in the recent years. This dissertation presents an experimental study of load mode capacitive sensors for indoor human localization and identification for smart home applications. Two different types of long range, highly sensitive and low noise capacitive sensor front-end interface circuits are designed, implemented and evaluated for performance. The first interface employs phase discrimination based technique to observe the changes in capacitance of the sensor, while in the second circuit, a phase-amplitude modulation based approach is used. To minimize the noise, the active capacitive sensing approach is employed and experimental results and their statistical analysis are furnished. Moreover, the use of load mode capacitive sensor to distinguish among a small group of people e.g., a family is studied. The capacitive sensors are used to measure the interaction of different human bodies with very low frequency (VLF) and low frequency (LF) electric fields. The electric and dielectric properties of human body being a strong nonlinear function of frequency also vary with the physiological traits of the human body and body tissue composition. So a load mode capacitive sensor is used in lowpass RC filter configuration, and magnitude responses of the filter for different people standing at a fixed distance from the sensor, so called body frequency absorption signatures of the body are measured using two different techniques. The first technique is based on the measurements taken in the asymptotic region of the RC filter frequency response. In the second technique, the circuit is configured in such a way that it always operates near the cutoff to minimize the attenuation due to higher frequencies, hence increasing signal to noise ratio (SNR). The experimental results for four male subjects with same height and age group, but different weights and body compositions are presented. A statistical analysis of the results along with advantages and limitations of the employed techniques is also provided.
L'emergere di nuove tecnologie come Internet of Things (IoT) e Big Data ha dato origine a una domanda sempre crescente di basso costo, bassa potenza, compattezza e semplici nodi di sensori per osservare a distanza alcuni fenomeni fisici. L'interno rilevamento, localizzazione, tracciamento, monitoraggio dell'attività e identificazione umana sono molto importante in molti contesti come il monitoraggio dell'assistenza sanitaria per gli anziani che vivono da solo, vita assistita (AAL), sicurezza e sorveglianza. Il sensing capacitivo è una tecnologia candidata per la localizzazione umana indoor, l'attività monitoraggio e identificazione. Sensori capacitivi, a basso costo e bassa potenza i dispositivi hanno guadagnato molta attrattiva dalla comunità scientifica e di ricerca negli ultimi anni. Questa dissertazione presenta uno studio sperimentale sulla modalità di carico sensori capacitivi per la localizzazione umana interna e l'identificazione per la casa intelligente applicazioni. Due diversi tipi di lungo raggio, altamente sensibili e a basso rumore capacitivo i circuiti di interfaccia front-end del sensore sono progettati, implementati e valutati per le prestazioni. La prima interfaccia impiega la tecnica basata sulla discriminazione di fase per osservare i cambiamenti di capacità del sensore, mentre nel secondo circuito, a viene utilizzato l'approccio basato sulla modulazione di ampiezza di fase. Per ridurre al minimo il rumore, il viene utilizzato l'approccio di rilevamento capacitivo attivo e i risultati sperimentali e i relativi vengono fornite analisi statistiche. Inoltre, l'uso del sensore capacitivo in modalità di carico per distinguere tra un piccolo gruppo di persone, ad esempio, viene studiata una famiglia. I sensori capacitivi sono usati per misurare l'interazione di diversi corpi umani con frequenza molto bassa (VLF) e bassa campi elettrici di frequenza (LF). Le proprietà elettriche e dielettriche del corpo umano essere una forte funzione non lineare di frequenza varia anche con i tratti fisiologici del corpo umano e della composizione del tessuto corporeo. Quindi un sensore capacitivo in modalità carico viene utilizzato nella configurazione del filtro RC passa-basso e per le risposte di magnitudine del filtro persone diverse che si trovano ad una distanza fissa dal sensore, le cosiddette firme di assorbimento della frequenza corporea del corpo sono misurate usando due tecniche differenti. Il la prima tecnica si basa sulle misurazioni effettuate nella regione asintotica del Risposta in frequenza del filtro RC. Nella seconda tecnica, il circuito è configurato in in modo tale che funzioni sempre vicino al limite per minimizzare l'attenuazione dovuta a frequenze più alte, quindi aumento del rapporto segnale / rumore (SNR). Il sperimentale risultati per quattro soggetti maschi con la stessa altezza e gruppo di età, ma diversi pesi e le composizioni del corpo sono presentate. Un'analisi statistica dei risultati insieme a vengono anche forniti vantaggi e limiti delle tecniche impiegate.
Contactless Indoor Human Localization and Identification using Capacitive Sensors for Smart Home Applications / Iqbal, Javed. - (2018 Jun 11).
Contactless Indoor Human Localization and Identification using Capacitive Sensors for Smart Home Applications
IQBAL, JAVED
2018
Abstract
The emergence of new technologies like Internet of Things (IoT) and Big Data has given rise to an ever increasing demand of low cost, low power, compact and simple sensor nodes to remotely observe certain physical phenomena. The indoor human detection, localization, tracking, activity monitoring and identification is very important in many contexts like health-care monitoring for elderly people living alone, ambient assisted living (AAL), security and surveillance. Capacitive sensing is a candidate technology for indoor human localization, activity monitoring and identification. Capacitive sensors, being low cost and low power devices has earned a lot of attraction from the research and scientific community in the recent years. This dissertation presents an experimental study of load mode capacitive sensors for indoor human localization and identification for smart home applications. Two different types of long range, highly sensitive and low noise capacitive sensor front-end interface circuits are designed, implemented and evaluated for performance. The first interface employs phase discrimination based technique to observe the changes in capacitance of the sensor, while in the second circuit, a phase-amplitude modulation based approach is used. To minimize the noise, the active capacitive sensing approach is employed and experimental results and their statistical analysis are furnished. Moreover, the use of load mode capacitive sensor to distinguish among a small group of people e.g., a family is studied. The capacitive sensors are used to measure the interaction of different human bodies with very low frequency (VLF) and low frequency (LF) electric fields. The electric and dielectric properties of human body being a strong nonlinear function of frequency also vary with the physiological traits of the human body and body tissue composition. So a load mode capacitive sensor is used in lowpass RC filter configuration, and magnitude responses of the filter for different people standing at a fixed distance from the sensor, so called body frequency absorption signatures of the body are measured using two different techniques. The first technique is based on the measurements taken in the asymptotic region of the RC filter frequency response. In the second technique, the circuit is configured in such a way that it always operates near the cutoff to minimize the attenuation due to higher frequencies, hence increasing signal to noise ratio (SNR). The experimental results for four male subjects with same height and age group, but different weights and body compositions are presented. A statistical analysis of the results along with advantages and limitations of the employed techniques is also provided.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2709584
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo