This thesis investigates vibration based machine condition monitoring and consists of two parts: bearing fault diagnosis and planetary gearbox modeling. In the first part, a new rolling element bearing diagnosis technique is introduced. Envelope analysis is one of the most advantageous methods for rolling element bearing diagnostics but finding the suitable frequency band for demodulation has been a substantial challenge for a long time. Introduction of the Spectral Kurtosis (SK) and Kurtogram mostly solved this problem but in situations where signal to noise ratio is very low or in presence of non-Gaussian noise these methods will fail. This major drawback may noticeably decrease their effectiveness and goal of this thesis is to overcome this problem. Vibration signals from rolling element bearings exhibit high levels of 2nd order cyclostationarity, especially in the presence of localized faults. A second-order cyclostationary signal is one whose autocovariance function is a periodic function of time: the proposed method, named Autogram by the authors, takes advantage of this property to enhance the conventional Kurtogram. The method computes the kurtosis of the unbiased autocorrelation (AC) of the squared envelope of the demodulated and undecimated signal, rather than the kurtosis of the filtered time signal. Moreover, to take advantage of unique features of the lower and upper portions of the AC, two modified forms of kurtosis are introduced and the resulting colormaps are called Upper and Lower Autogram. In addition, a new thresholding method is also proposed to enhance the quality of the frequency spectrum analysis. Finally, the proposed method is tested on experimental data and compared with literature results so to assess its performances in rolling element bearing diagnostics. Moreover, a second novel method for diagnosis of rolling element bearings is developed. This approach is a generalized version of the cepstrum pre-whitening (CPW) which is a simple and effective technique for bearing diagnosis. The superior performance of the proposed method has been shown on two real case data. For the first case, the method successfully extracts bearing characteristic frequencies related to two defected bearings from the acquired signal. Moreover, the defect frequency was highlighted in case two, even in presence of strong electromagnetic interference (EMI). The second part presents a newly developed lumped parameter model (LPM) of a planetary gear. Planets bearings of planetary gear sets exhibit high rate of failure; detection of these faults which may result in catastrophic breakdowns have always been challenging. Another objective of this thesis is to investigate the planetary gears vibration properties in healthy and faulty conditions. To seek this goal a previously proposed lumped parameter model (LPM) of planetary gear trains is integrated with a more comprehensive bearing model. This modified LPM includes time varying gear mesh and bearing stiffness and also nonlinear bearing stiffness due to the assumption of Hertzian contact between the rollers/balls and races. The proposed model is completely general and accepts any inner/outer race bearing defect location and profile in addition to its original capacity of modelling cracks and spalls of gears; therefore, various combinations of gears and bearing defects are also applicable. The model is exploited to attain the dynamic response of the system in order to identify and analyze localized faults signatures for inner and outer races as well as rolling elements of planets bearings. Moreover, bearing defect frequencies of inner/outer race and ball/roller and also their sidebands are discussed thoroughly. Finally, frequency response of the system for different sizes of planets bearing faults are compared and statistical diagnostic algorithms are tested to investigate faults presence and growth.

Fault Detection in Rotating Machinery: Vibration analysis and numerical modeling / Moshrefzadeh, Ali. - (2018 Apr 20). [10.6092/polito/porto/2706338]

Fault Detection in Rotating Machinery: Vibration analysis and numerical modeling

MOSHREFZADEH, ALI
2018

Abstract

This thesis investigates vibration based machine condition monitoring and consists of two parts: bearing fault diagnosis and planetary gearbox modeling. In the first part, a new rolling element bearing diagnosis technique is introduced. Envelope analysis is one of the most advantageous methods for rolling element bearing diagnostics but finding the suitable frequency band for demodulation has been a substantial challenge for a long time. Introduction of the Spectral Kurtosis (SK) and Kurtogram mostly solved this problem but in situations where signal to noise ratio is very low or in presence of non-Gaussian noise these methods will fail. This major drawback may noticeably decrease their effectiveness and goal of this thesis is to overcome this problem. Vibration signals from rolling element bearings exhibit high levels of 2nd order cyclostationarity, especially in the presence of localized faults. A second-order cyclostationary signal is one whose autocovariance function is a periodic function of time: the proposed method, named Autogram by the authors, takes advantage of this property to enhance the conventional Kurtogram. The method computes the kurtosis of the unbiased autocorrelation (AC) of the squared envelope of the demodulated and undecimated signal, rather than the kurtosis of the filtered time signal. Moreover, to take advantage of unique features of the lower and upper portions of the AC, two modified forms of kurtosis are introduced and the resulting colormaps are called Upper and Lower Autogram. In addition, a new thresholding method is also proposed to enhance the quality of the frequency spectrum analysis. Finally, the proposed method is tested on experimental data and compared with literature results so to assess its performances in rolling element bearing diagnostics. Moreover, a second novel method for diagnosis of rolling element bearings is developed. This approach is a generalized version of the cepstrum pre-whitening (CPW) which is a simple and effective technique for bearing diagnosis. The superior performance of the proposed method has been shown on two real case data. For the first case, the method successfully extracts bearing characteristic frequencies related to two defected bearings from the acquired signal. Moreover, the defect frequency was highlighted in case two, even in presence of strong electromagnetic interference (EMI). The second part presents a newly developed lumped parameter model (LPM) of a planetary gear. Planets bearings of planetary gear sets exhibit high rate of failure; detection of these faults which may result in catastrophic breakdowns have always been challenging. Another objective of this thesis is to investigate the planetary gears vibration properties in healthy and faulty conditions. To seek this goal a previously proposed lumped parameter model (LPM) of planetary gear trains is integrated with a more comprehensive bearing model. This modified LPM includes time varying gear mesh and bearing stiffness and also nonlinear bearing stiffness due to the assumption of Hertzian contact between the rollers/balls and races. The proposed model is completely general and accepts any inner/outer race bearing defect location and profile in addition to its original capacity of modelling cracks and spalls of gears; therefore, various combinations of gears and bearing defects are also applicable. The model is exploited to attain the dynamic response of the system in order to identify and analyze localized faults signatures for inner and outer races as well as rolling elements of planets bearings. Moreover, bearing defect frequencies of inner/outer race and ball/roller and also their sidebands are discussed thoroughly. Finally, frequency response of the system for different sizes of planets bearing faults are compared and statistical diagnostic algorithms are tested to investigate faults presence and growth.
20-apr-2018
File in questo prodotto:
File Dimensione Formato  
Polito PhD thesis.pdf

Open Access dal 02/12/2018

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 25.43 MB
Formato Adobe PDF
25.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2706338
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo