Waves in fluid flows represents the underlying theme of this research work. Wave interactions in fluid flows are part of multidisciplinary physics. It is known that many ideas and phenomena recur in such apparently diverse fields, as solar physics, meteorology, oceanography, aeronautical and hydraulic engineering, optics, and population dynamics. In extreme synthesis, waves in fluids include, on the one hand, surface and internal waves, their evolution, interaction and associated wave-driven mean flows; on the other hand, phenomena related to nonlinear hydrodynamic stability and, in particular, those leading to the onset of turbulence. Close similarities and key differences exist between these two classes of phenomena. In the hope to get hints on aspects of a potential overall vision, this study considers two different systems located at the opposite limits of the range of existing physical fluid flow situations: first, sheared parallel continuum flows - perfect incompressibility and charge neutrality - second, the solar wind - extreme rarefaction and electrical conductivity. Therefore, the activity carried out during the doctoral period consists of two parts. The first is focused on the propagation properties of small internal waves in parallel flows. This work was partly carried out in the framework of a MISTI-Seeds MITOR project proposed by Prof. D. Tordella (PoliTo) and Prof. G. Staffilani (MIT) on the long term interaction in fluid flows. The second part regards the analysis of solar-wind fluctuations from in situ measurements by the Voyagers spacecrafts at the edge of the heliosphere. This work was supported by a second MISTI-Seeds MITOR project, proposed by D. Tordella (PoliTo), J. D. Richardson (MIT, Kavli Institute), with the collaboration of M. Opher (BU).

Internal waves in fluid flows. Possible coexistence with turbulence / Fraternale, Federico. - (2017). [10.6092/polito/porto/2687873]

Internal waves in fluid flows. Possible coexistence with turbulence

FRATERNALE, FEDERICO
2017

Abstract

Waves in fluid flows represents the underlying theme of this research work. Wave interactions in fluid flows are part of multidisciplinary physics. It is known that many ideas and phenomena recur in such apparently diverse fields, as solar physics, meteorology, oceanography, aeronautical and hydraulic engineering, optics, and population dynamics. In extreme synthesis, waves in fluids include, on the one hand, surface and internal waves, their evolution, interaction and associated wave-driven mean flows; on the other hand, phenomena related to nonlinear hydrodynamic stability and, in particular, those leading to the onset of turbulence. Close similarities and key differences exist between these two classes of phenomena. In the hope to get hints on aspects of a potential overall vision, this study considers two different systems located at the opposite limits of the range of existing physical fluid flow situations: first, sheared parallel continuum flows - perfect incompressibility and charge neutrality - second, the solar wind - extreme rarefaction and electrical conductivity. Therefore, the activity carried out during the doctoral period consists of two parts. The first is focused on the propagation properties of small internal waves in parallel flows. This work was partly carried out in the framework of a MISTI-Seeds MITOR project proposed by Prof. D. Tordella (PoliTo) and Prof. G. Staffilani (MIT) on the long term interaction in fluid flows. The second part regards the analysis of solar-wind fluctuations from in situ measurements by the Voyagers spacecrafts at the edge of the heliosphere. This work was supported by a second MISTI-Seeds MITOR project, proposed by D. Tordella (PoliTo), J. D. Richardson (MIT, Kavli Institute), with the collaboration of M. Opher (BU).
2017
File in questo prodotto:
File Dimensione Formato  
PHD_Thesis_Fraternale_IRIS.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 45.85 MB
Formato Adobe PDF
45.85 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2687873
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo